如图,在△ABC中,∠BAC=60°,∠ACB=40°,P、Q分别在BC、CA上,并且AP、BQ分别是∠BAC、∠ABC的角平分线.求证:
(1)BQ=CQ;
(2)BQ+AQ=AB+BP.
如图,在△ABC中,∠BAC=60°,∠ACB=40°,P、Q分别在BC、CA上,并且AP、BQ分别是∠BAC、∠ABC
答案:1 悬赏:10 手机版
解决时间 2021-05-25 20:52
- 提问者网友:孤凫
- 2021-05-24 20:40
最佳答案
- 五星知识达人网友:雪起风沙痕
- 2021-05-24 21:00
证明:(1)∵BQ是∠ABC的角平分线,
∴∠QBC=
1
2∠ABC.
∵∠ABC+∠ACB+∠BAC=180°,且∠BAC=60°,∠ACB=40°,
∴∠ABC=80°,
∴∠QBC=
1
2×80°=40°,
∴∠QBC=∠C,
∴BQ=CQ;
(2)延长AB至M,使得BM=BP,连结MP.
∴∠M=∠BPM,
∵△ABC中∠BAC=60°,∠C=40°,
∴∠ABC=80°,
∵BQ平分∠ABC,
∴∠QBC=40°=∠C,
∴BQ=CQ,
∵∠ABC=∠M+∠BPM,
∴∠M=∠BPM=40°=∠C,
∵AP平分∠BAC,
∴∠MAP=∠CAP,
在△AMP和△ACP中,
∵
∠M=∠C
∠MAP=∠CAP
AP=AP
∴△AMP≌△ACP,
∴AM=AC,
∵AM=AB+BM=AB+BP,AC=AQ+QC=AQ+BQ,
∴AB+BP=AQ+BQ.
试题解析:
(1)由三角形的内角和就可以得出∠ABC=80°,再由角平分线就可以得出∠QBC=40°,就有∠QBC=∠C而得出结论;
(2)延长AB至M,使得BM=BP,连结MP,根据条件就可以得出∠M=∠C,进而证明△AMP≌△ACP就可以得出结论.
名师点评:
本题考点: 全等三角形的判定与性质.
考点点评: 本题主要考查全等三角形的判定与性质的知识点,解答本题的关键是熟练掌握判定两个三角形全等的一般方法:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯