已知函数f(x)=log3x+2?(x∈[1,9]),则函数y=[f(x)]2+f(x2)的最大值是A.13B.16C.18D.22
答案:2 悬赏:40 手机版
解决时间 2021-04-11 10:23
- 提问者网友:咪咪
- 2021-04-10 18:19
已知函数f(x)=log3x+2?(x∈[1,9]),则函数y=[f(x)]2+f(x2)的最大值是A.13B.16C.18D.22
最佳答案
- 五星知识达人网友:话散在刀尖上
- 2021-04-10 19:30
A解析分析:先求函数的定义域,要使函数有意义需1≤x≤9且1≤x2≤9,解得x∈[1,3],在将所求函数展开为关于整体log3x的函数,利用换元法,将函数转化为二次函数求最值问题,再利用配方法求二次函数最大值即可解答:函数y=[f(x)]2+f(x2)的定义域为{x|1≤x≤9且1≤x2≤9}=[1,3]且y=[f(x)]2+f(x2)=(log3x+2)2+log3(x2)+2=(log3x)2+6log3x+6设t=log3x,∵x∈[1,3],∴t∈[0,1]∴y=t2+6t+6=(t+3)2-3在[0,1]上单调递增∴y≤1+6+6=13故选 A点评:本题考查了复合函数定义域的求法,换元法求函数的最值,对数函数和二次函数的值域的求法,转化化归的思想方法,本题易忘记求定义域而使得最值求错
全部回答
- 1楼网友:一袍清酒付
- 2021-04-10 20:29
谢谢了
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯