如图,在菱形ABCD中,E,F为边BC、CD上的点,且CE=CF,连接AE,AF,∠ABC的平分线交AE于点G,连接CG.
(1)求证:AG=CG;
(2)求证:CG∥AF;
(3)若BG=CG,则△ABE与△BGE是否相似?若相似,写出证明过程;若不相似,请说明理由.
如图,在菱形ABCD中,E,F为边BC、CD上的点,且CE=CF,连接AE,AF,∠ABC的平分线交AE于点G,连接CG
答案:1 悬赏:10 手机版
解决时间 2021-08-23 05:54
- 提问者网友:雾里闻花香
- 2021-08-22 22:55
最佳答案
- 五星知识达人网友:街头电车
- 2021-08-23 00:30
(1)证明:在菱形ABCD中,AB=BC,
∵BG平分∠ABC,
∴∠ABG=∠CBG,
在△ABG和△CBG中,
AB=BC
∠ABG=∠CBG
BG=BG,
∴△ABG≌△CBG(SAS),
∴AG=CG;
(2)证明:连接AC,
∵AC是菱形ABCD的对角线,
∴∠ACE=∠ACF,
在△ACE和△ACF中,
CE=CF
∠ACE=∠ACF
AC=AC,
∴△ACE≌△ACF(SAS),
∴∠CAE=∠CAF,
由(1)知,AG=CG,
∴∠CAE=∠ACG,
∴∠ACG=∠CAF,
∴CG∥AF;
(3)△ABE∽△BGE.
理由如下:由(1)知,△ABG≌△CBG,
∴∠BAG=∠BCG,
∵BG=CG,
∴∠CBG=∠BCG,
∴∠BAG=∠CBG,
又∵∠AEB=∠BEG,
∴△ABE∽△BGE.
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯