关于三角函数有哪些有用得公式或定义
- 提问者网友:送舟行
- 2021-07-25 15:34
- 五星知识达人网友:洒脱疯子
- 2021-07-25 16:06
三角函数一共有6个:
直角三角形中:
正弦:sin 对边比斜边
余弦:cos 邻边比斜边
正切:tan 对边比邻边
余切:cot 邻边比对边
正割:csc 斜边比对边
余割:sec 斜边比邻边
设三角形三个内角分别为A,B,C;对边分别为a,b,c
正弦定理:
a/sinA=b/sinB=c/sinC=2R,(R为该三角形外接圆半径)
余弦定理:
c2=a2+b2-2abcosC
b2=a2+c2-2accosB
a2=b2+c2-2bccosA
由余弦定理可推导出:
a=bcosC+ccosB
b=ccosA+acosC
c=acosB+bcosA
海仑公式:
SΔABC=√[p(p-a)(p-b)(p-c)],而公式里的p为半周长:
p=(a+b+c)/2
1 三角函数公式大全
一,诱导公式
口诀:(分子)奇变偶不变,符号看象限.
1. sin (α+k·360)=sin α
cos (α+k·360)=cos a
tan (α+k·360)=tan α
2. sin(180°+β)=-sinα
cos(180°+β)=-cosa
3. sin(-α)=-sina
cos(-a)=cosα
4*. tan(180°+α)=tanα
tan(-α)=tanα
5. sin(180°-α)=sinα
cos(180°-α)=-cosα
6. sin(360°-α)=-sinα
cos(360°-α)=cosα
7. sin(π/2-α)=cosα
cos(π/2-α)=sinα
8*. Sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
9*. Sin(π/2+α)=cosα
cos(π/2+a)=-sinα
10*.sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
二,两角和与差的三角函数
1. 两点距离公式
2. S(α+β): sin(α+β)=sinαcosβ+cosαsinβ
C(α+β): cos(α+β)=cosαcosβ-sinαsinβ
3. S(α-β): sin(α-β)=sinαcosβ-cosαsinβ
C(α-β): cos(α-β)=cosαcosβ+sinαsinβ
4. T(α+β):
T(α-β):
5*.
三,二倍角公式
1. S2α: sin2α=2sinαcosα
2. C2a: cos2α=cos2α-sin2a
3. T2α: tan2α=(2tanα)/(1-tan2α)
4. C2a': cos2α=1-2sin2α
cos2α=2cos2α-1
四*,其它杂项(全部不可直接用)
1.辅助角公式
asinα+bcosα=sin(a+φ),其中tanφ=b/a,其终边过点(a, b)
asinα+bcosα=cos(a-φ),其中tanφ=a/b,其终边过点(b,a)
2.降次,配方公式
降次:
sin2θ=(1-cos2θ)/2
cos2θ=(1+cos2θ)/2
配方
1±sinθ=[sin(θ/2)±cos(θ/2)]2
1+cosθ=2cos2(θ/2)
1-cosθ=2sin2(θ/2)
3. 三倍角公式
sin3θ=3sinθ-4sin3θ
cos3θ=4cos3-3cosθ
4. 万能公式
5. 和差化积公式
sinα+sinβ= 书p45 例5(2)
sinα-sinβ=
cosα+cosβ=
cosα-cosβ=
6. 积化和差公式
sinαsinβ=1/2[sin(α+β)+sin(α-β)] 书p45 例5(1)
cosαsinβ=1/2[sin(α+β)-sin(α-β)]
sinαsinβ-1/2[cos(α+β)-cos(α-β)]
cosαcosβ=1/2[cos(α+β)+cos(α-β)]
7. 半角公式 书p45 例4
小计:57个
另:三角函数口诀
三角知识,自成体系,
记忆口诀,一二三四。
一个定义,三角函数,
两种制度,角度弧度。
三套公式,牢固记忆,
同角诱导,加法定理。
同角公式,八个三组,
平方关系,导数商数。
诱导公式,两类九组,
象限定号,偶同奇余。
两角和差,欲求正弦,
正余余正,符号同前。
两角和差,欲求余弦,
余余正正,符号相反。
两角相等,倍角公式,
逆向反推,半角极限。
加加减减,变量替换,
积化和差,和奇互变。