单选题已知椭圆与双曲线共焦点,点P是该椭圆与双曲线在第一象限的公共点,如果以椭圆的右焦
答案:2 悬赏:20 手机版
解决时间 2021-01-03 16:13
- 提问者网友:做自己de王妃
- 2021-01-02 18:52
单选题
已知椭圆与双曲线共焦点,点P是该椭圆与双曲线在第一象限的公共点,如果以椭圆的右焦点为焦点,以y轴为准线的抛物线恰过P点,那么椭圆的离心率e1与双曲线的离心率e2之间的关系为A.e2-e1=1B.e1+e2=2C.D.
最佳答案
- 五星知识达人网友:佘樂
- 2021-01-02 19:30
A解析分析:设椭圆及双曲线的半焦距为c,左右焦点分别为F1、F2,P点的坐标为(x,y).根据圆锥曲线的共同定义,则对于椭圆而言:PF1=a1+e1x,PF2=a1-e1x,对于双曲线而言:PF1=e2x+a2,PF2=e2x-a2,对于抛物线而言:PF2=x,从而建立a1-e1x=e2x-a2=x,消去x化简即得
全部回答
- 1楼网友:第四晚心情
- 2021-01-02 20:16
就是这个解释
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯