f(x)在[0,1]上连续,证明:∫[0,1]f(x)dx∫[x,1]f(y)dy=1/2(∫[0,
答案:2 悬赏:80 手机版
解决时间 2021-02-03 04:38
- 提问者网友:流星是天使的眼泪
- 2021-02-03 00:44
f(x)在[0,1]上连续,证明:∫[0,1]f(x)dx∫[x,1]f(y)dy=1/2(∫[0,
最佳答案
- 五星知识达人网友:十鸦
- 2021-02-03 02:03
设原函数为F(x),∫[x,1]f(y)dy=F(1)-F(x)∫[0,1]f(x)dx∫[x,1]f(y)dy=∫[0,1]f(x)(F(1)-F(x))dx=F(1)∫[0,1]f(x)dx - ∫[0,1]F(x)d(F(x))=F(1)(F(1)-F(0)) - 1/2 [(F(1))^2 - F(0)^2]=1/2(F(1)^2 - 2F(1)F(0) + F(0)^2] =1/2(∫[0,1]f(x)dx)^2不懂可追问
全部回答
- 1楼网友:妄饮晩冬酒
- 2021-02-03 03:08
这个问题我还想问问老师呢
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯