已知数列an的前n项和为Sn,且满足an+SnSn-1=0(n>=2,n∈N*),a1=1/2.
(1)判断1/Sn,an是否为等差数列,说明你的理由
(2)求数列an的通项公式
已知数列an的前n项和为Sn,且满足an+SnSn-1=0(n>=2,n∈N*),a1=1/2.
答案:1 悬赏:50 手机版
解决时间 2021-04-23 23:26
- 提问者网友:那叫心脏的地方装的都是你
- 2021-04-23 09:39
最佳答案
- 五星知识达人网友:春色三分
- 2021-04-23 11:19
因为An=Sn-Sn-1.
所以Sn-Sn-1+Sn*Sn-1=0,等式两边同时除以 Sn*Sn-1
得:1/Sn-1/Sn-1+ =1,
所以1/Sn 为等差数列.
因为a1=1/2.所以S1=1/2,1/S1=2.因为上面证得 1/Sn为 等差数列.
所以数列{1/Sn} =1/S1+(n-1)*1=n+1.
所以 Sn=1/(n+1).Sn-1=1/n
带入an+SnSn-1=0 中.得an=-1/【n(n+1)】,因此an不是等差数列,且an的通项公式为 an=-1/【n(n+1)】.
带入n=1,与题目中an-1/2不符.
所以 an=1/2 ,当n=1时
an=-1/【n(n+1)】,当n>=2时.
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯