永发信息网

如何理解矩阵特征值

答案:4  悬赏:50  手机版
解决时间 2021-03-22 07:47
  • 提问者网友:書生途
  • 2021-03-21 10:28
如何理解矩阵特征值
最佳答案
  • 五星知识达人网友:西岸风
  • 2021-03-21 11:28
1.定义:若矩阵A乘上某个非零向量α等于一个实数λ乘上该向量,即Aα=λα,则称λ为该矩阵的特征值,α为属于特征值λ的一个特征向量。
2.求矩阵A的特征值及特征向量的步骤:
(1)写出行列式|λE-A|;
(2)|λE-A|求=0的全部根,它们就是A的全部特征值,其中E为单位矩阵;
(3)对于矩阵A的每一个特征值λ,求出齐次线性方程组(λE-A)X=0的一个基础解系,则可以得到属于特征值λ的特征向量。
3.特征值的作用和意义体现在用矩阵进行列向量的高次变换也就是矩阵的高次方乘以列向量的计算中。数学中的很多变换可以用矩阵的乘法来表示,在这样的变换中,一个列向量(点)α变成另一个列向量(点)β的过程可以看成是一个矩阵A乘以α得到β,即Aα=β,如果把同样的变换连续的重复的做n次则需要用矩阵高次方来计算:A^n·α,如果没有特征值和特征向量,此处就要计算矩阵A的n次方,这个运算量随着n的增加,变得越来越大,很不方便。而利用特征值和特征向量,可以达到简化计算的目的:设A特征值分别为λ1,λ2,------λk,对应的特征向量分别为α1,α2,------αk,且α可以分解为α=x1·α1+x2·α2+---+xk·αk,
则A^n·α=A^n·(x1·α1+x2·α2+---+xk·αk)
=A^n·x1·α1+A^n·x2·α2+---+A^n·xk·αk
=x1A^n·α1+x2A^n·α2+---+xkA^n·αk
=x1(λ1)^n·α1+x2(λ2)^n·α2+---+xk(λk)^n·αk.
这样就将矩阵的n次方的运算变成了特征值的n次方的运算。
全部回答
  • 1楼网友:低音帝王
  • 2021-03-21 14:35
矩阵特征向量是置换相抵下的不变量,,,简单点说就是一个线性变换作用在向量上,可以把矩阵看作那个线性变换的线性算子,,,这个作用不改变这个向量的方向,只改变这个向量的大小,而特征值就是那个改变的倍数,,,,特征值在控制理论中有广泛的应用,,,因为它的性质非常好,,,,,,
  • 2楼网友:琴狂剑也妄
  • 2021-03-21 13:31
如何理解矩阵,特征值和特征向量?
答:线性空间中,当你选定一组基之后,不仅可以用一个向量来描述空间中的任何一个对象,而且可以用矩阵来描述该空间中的任何一个运动(变换),从而得出矩阵是线性空间里的变换的描述。而使某个对象发生对应运动(变换)的方法,就是用代表那个运动(变换)的矩阵,乘以代表那个对象的向量。转换为数学语言: 是矩阵, 是向量, 相当于将 作线性变换从而得到 ,从而使得矩阵 (由n个向量组成)在对象或者说向量 上的变换就由简单的实数 来刻画,由此称 为矩阵A的特征值,而 称为 对应的特征向量。
总结来说,特征值和特征向量的出现实际上将复杂的矩阵由实数和低维的向量来形象的描述(代表),实现了降维的目的。在几何空间上还可以这样理解:矩阵A是向量的集合,而 则是向量的方向, 可以理解为矩阵A在 方向上作投影,而矩阵又是线性空间变换的描述,所以变换后方向保持不变,仅是各个方向投影后有个缩放比例 。
  • 3楼网友:酒醒三更
  • 2021-03-21 11:56
定义 设A是n阶方阵,如果数λ和n维非零列向量x使关系式
AX=λX (1)
成立,那么这样的数λ称为矩阵A特征值,非零向量x称为A的对应于特征值λ的特征向量.(1)式也可写成,
( A-λE)X=0 (2)
这是n个未知数n个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式
| A-λE|=0 , (3)
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯