数列{a n }的通项公式为an=n2*cos(2nπ/3),其前n项和为Sn,则S30为多少
答案:2 悬赏:70 手机版
解决时间 2021-02-23 12:07
- 提问者网友:捧腹剧
- 2021-02-23 04:27
数列{a n }的通项公式为an=n2*cos(2nπ/3),其前n项和为Sn,则S30为多少
最佳答案
- 五星知识达人网友:大漠
- 2021-02-23 04:58
解:
n=3k+1 (k∈N)时,2nπ/3=2(3k+1)π/3=2kπ+ 2π/3 cos(2kπ+ 2π/3)=cos(2π/3)=-1/2
n=3k+2 (k∈N)时,2nπ/3=2(3k+2)π/3=2kπ+ 4π/3 cos(2kπ+ 4π/3)=cos(4π/3)=-1/2
n=3k+3 (k∈N)时,2nπ/3=2(3k+3)π/3=2(k+1)π cos[2(k+1)π]=1
即2nπ/3按-1/2,1/2,1循环,每3项循环一次。
30/3=10,正好循环10次。
(30-3)/3=9,k从1到9。
a(3k+1)+a(3k+2)+a(3k+3)
=(3k+1)²(-1/2) +(3k+2)²(-1/2) +(3k+3)²
=9k +13/2
S30=9(1+2+...+9)+(13/2)×9=927/2
n=3k+1 (k∈N)时,2nπ/3=2(3k+1)π/3=2kπ+ 2π/3 cos(2kπ+ 2π/3)=cos(2π/3)=-1/2
n=3k+2 (k∈N)时,2nπ/3=2(3k+2)π/3=2kπ+ 4π/3 cos(2kπ+ 4π/3)=cos(4π/3)=-1/2
n=3k+3 (k∈N)时,2nπ/3=2(3k+3)π/3=2(k+1)π cos[2(k+1)π]=1
即2nπ/3按-1/2,1/2,1循环,每3项循环一次。
30/3=10,正好循环10次。
(30-3)/3=9,k从1到9。
a(3k+1)+a(3k+2)+a(3k+3)
=(3k+1)²(-1/2) +(3k+2)²(-1/2) +(3k+3)²
=9k +13/2
S30=9(1+2+...+9)+(13/2)×9=927/2
全部回答
- 1楼网友:独钓一江月
- 2021-02-23 05:36
解:
n=3k+1 (k∈N)时,2nπ/3=2(3k+1)π/3=2kπ+ 2π/3 cos(2kπ+ 2π/3)=cos(2π/3)=-1/2
n=3k+2 (k∈N)时,2nπ/3=2(3k+2)π/3=2kπ+ 4π/3 cos(2kπ+ 4π/3)=cos(4π/3)=-1/2
n=3k+3 (k∈N)时,2nπ/3=2(3k+3)π/3=2(k+1)π cos[2(k+1)π]=1
即2nπ/3按-1/2,1/2,1循环,每3项循环一次。
30/3=10,正好循环10次
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯