永发信息网

已知定义在R上连续的奇函数f(x)在(0,+∞)上的是增函数,若f(x)>f(2-x),则x的范围是A.x>1B.x<1C.0<x<2D.1<x<2

答案:2  悬赏:30  手机版
解决时间 2021-04-11 10:10
  • 提问者网友:记得曾经
  • 2021-04-10 13:53
已知定义在R上连续的奇函数f(x)在(0,+∞)上的是增函数,若f(x)>f(2-x),则x的范围是A.x>1B.x<1C.0<x<2D.1<x<2
最佳答案
  • 五星知识达人网友:空山清雨
  • 2021-04-10 14:38
A解析分析:由“f(x)定义在R上连续的奇函数且在(0,+∞)上的是增函数”可知f(x)在R上是增函数,再由f(x)>f(2-x)利用单调性求解.解答:∵f(x)定义在R上连续的奇函数且在(0,+∞)上的是增函数∴f(x)在R上是增函数又∵f(x)>f(2-x),∴x>2-x∴x>1故选A点评:本题主要考查函数的奇偶性和单调性的综合运用,还考查了转化思想,属中档题.
全部回答
  • 1楼网友:从此江山别
  • 2021-04-10 15:14
我检查一下我的答案
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯