对于函数y=f(x),定义域为D,以下命题正确的是(只要求写出命题的序号) ________;
①若f(-1)=f(1),f(-2)=f(2),则y=f(x)是D上的偶函数;
②若f(-1)<f(0)<f(1)<f(2),则y=f(x)是D上的递增函数;
③若f'(2)=0,则y=f(x)在x=2处一定有极大值或极小值;
④若?x∈D,都有f(x+1)=f(-x+3)成立,则y=f(x)图象关于直线x=2对称.
对于函数y=f(x),定义域为D,以下命题正确的是(只要求写出命题的序号)________;①若f(-1)=f(1),f(-2)=f(2),则y=f(x)是D上的偶
答案:2 悬赏:0 手机版
解决时间 2021-04-10 05:00
- 提问者网友:黑米和小志
- 2021-04-09 21:58
最佳答案
- 五星知识达人网友:未来江山和你
- 2021-04-09 22:30
解:对于①,由于f(-1)=f(1),f(-2)=f(2),是y=f(x)在D上的两个函数值,不能保证任意两点之间的对称性,故不对;
对于②f(-1)<f(0)<f(1)<f(2)只是列出了部分函数值大小的关系,无法判断整个区间上的函数值大小,故D不对;
对于③,极值存在的条件是该点处的导数为0,且该点两侧函数的单调性相反,故据③的条件,无法确定在x=2处一定有极大值或极小值;
对于④,由于x+1,-x+3到直线x=2的距离相等,又有已知,其函数值也相等,故y=f(x)图象关于直线x=2对称,④正确.
故
对于②f(-1)<f(0)<f(1)<f(2)只是列出了部分函数值大小的关系,无法判断整个区间上的函数值大小,故D不对;
对于③,极值存在的条件是该点处的导数为0,且该点两侧函数的单调性相反,故据③的条件,无法确定在x=2处一定有极大值或极小值;
对于④,由于x+1,-x+3到直线x=2的距离相等,又有已知,其函数值也相等,故y=f(x)图象关于直线x=2对称,④正确.
故
全部回答
- 1楼网友:污到你湿
- 2021-04-09 23:44
谢谢回答!!!
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯