一元一次方程的经典题型
答案:2 悬赏:70 手机版
解决时间 2021-03-01 11:58
- 提问者网友:我一贱你就笑
- 2021-02-28 22:32
一元一次方程的经典题型
最佳答案
- 五星知识达人网友:雪起风沙痕
- 2021-02-28 22:47
一、判断题:
(1)判断下列方程是否是一元一次方程:
①-3x-6x2=7;( ) ② ( )
③5x+1-2x=3x-2; ( ) ④3y-4=2y+1. ( )
(2)判断下列方程的解法是否正确:
①解方程3y-4=y+3
解:3y-y=3+4,2y=7,y= ;( )
②解方程:0.4x-3=0.1x+2
解:0.4x+0.1x=2-3;0.5x=-1,x=-2;( )
③解方程
解:5x+15-2x-2=10,3x=-3,x=-1;
④解方程
解:2x-4+5-5x=-1,-3x=-2,x= .( )
二、填空题:
(1)若2(3-a)x-4=5是关于x的一元一次方程,则a≠ .
(2)关于x的方程ax=3的解是自然数,则整数a的值为: .
(3)方程5x-2(x-1)=17 的解是 .
(4)x=2是方程2x-3=m- 的解,则m= .
(5)若-2x2-5m+1=0 是关于x的一元一次方程,则m= .
(6)当y= 时,代数式5y+6与3y-2互为相反数.
(7)当m= 时,方程 的解为0.
(8)已知a≠0.则关于x的方程3ab-(a+b)x=(a-b)x的解为 .
三.选择题:
(1)方程ax=b的解是( ).
A.有一个解x= B.有无数个解
C.没有解 D.当a≠0时,x=
(2)解方程 ( x-1)=3,下列变形中,较简捷的是( )
A.方程两边都乘以4,得3( x-1)=12
B.去括号,得x- =3
C.两边同除以 ,得 x-1=4
D.整理,得
(3)方程2- 去分母得( )
A.2-2(2x-4)=-(x-7) B.12-2(2x-4)=-x-7
C.12-2(2x-4)=-(x-7) D.以上答案均不对
(4)若代数式 比 大1,则x的值是( ).
A.13 B. C.8 D.
(5)x=1是方程( )的解.
A.-
B.
C.2{3[4(5x-1)-8]-2}=8
D.4x+ =6x+
四、解下列方程:
(1)7(2x-1)-3(4x-1)=4(3x+2)-1;
(2) (5y+1)+ (1-y)= (9y+1)+ (1-3y);
(3) [ ( )-4 ]=x+2;
(4)
(5)
(6)
(7)
(8)20%+(1-20%)(320-x)=320×40%
五、解答下列各题:
(1)x等于什么数时,代数式 的值相等?
(2)y等于什么数时,代数式 的值比代数式 的值少3?
(3)当m等于什么数时,代数式2m- 的值与代数式 的值的和等于5?
(4)解下列关于x的方程:
①ax+b=bx+a;(a≠b);
② .
第四章 一元一次方程的应用(习题课)
一、目的要求
1.通过练习巩固学生已学过的列出一元一次方程解应用题的5个步骤和有关注意事项,特别是提高寻找相等关系,并把相等关系正确地表示成方程的能力。
2.通过练习使学生进一步领会采用代数方法解应用题的优越性。
二、内容分析
到现在为止,学生已经接触了列出一元一次方程解以下四类应用题:
1.和倍、差倍问题;
2.形积变化问题;
3.相遇问题;
4.追及问题,它与相遇问题统称行程问题(行程问题中还有一种“相背而行”的情况,我们把“相背而行”看作与“相向而行”在数学上同等,所以在教科书中没有提及。当两个沿着环形跑道运动时,“相向”与“相背”明显是一回事)。
通过这四类应用题,学生学习了列出一元一次方程应用题的方法(含五个步骤),了解了代数方法与算术方法的差别,并初步体会到代数方法由于使已知数、未知数处于平等地位,方程很容易列出,比算术解法优越(当然这不是绝对的),存在着算术解法比代数解法简捷的例子)。
本节课要复习列出一元一次方程解应用题的五个步骤以及前两类问题,并适当予以拓伸。
三、教学过程
复习提问:
1.列出一元一次方程解应用题的五个步骤分别是什么?其中关键步骤是哪一个?
2.什么叫做“弄清题意”?(“弄清题意”就是搞清楚题目的意思,弄懂每句话的意义,能够说出知的是什么,要求出的是什么。)
3.在把相等关系表示成方程时,要注意些什么?(把相等关系的左边、右边都表示成代数式,并且要使用统一的计量单位。)
引入新课:今天我们要通过做一些练习来巩固已经学过的列出一元一次方程解应用题的知识。
课堂练习:
1.某农具厂计划在6天内生产某种新式农具144件,第一天已生产了19件,后5天平均每天应当生产多少件?
提示:设后5天平均每天应当生产x件,根据题意,得
5x+19=144.
解得经x=25。
2.某厂前年年底还有一批职工住在平房里,去年这些职工中有25%搬进了新楼房,到年底这家工厂还有600名职工住在平房里,前年年底这家工厂有多少名职工住在平房里?
提示:设前年年底这家工厂还有x名职工住在平房里,根据题意,得
x-25%·x=600。
解得x=800。
3.在底面直径为12cm,高为20cm的圆柱形容器中注满水,倒入底面是边长为10cm的正方形的长方体容器,正好注满。这个长方体容器的高是多少?(在本题中,假设两个容器里的厚度都可以不考虑,π取近似值3.14。)
提示:设长方体容器的高为xcm,根据题意,得
,
3.14×720=100x。
解得 x=22.608。
4.请同学们根据一元一次方程
编一道应用题。
提示:可从编某数问题着手,先说“某数加上它的20%等于720,求某数”。然后把某数赋以实际意义,例如“初一(1)班张小红到去年年底已经在银行储蓄720元,比前年年底又增加了20%。张小红到前年年底在储蓄多少元?
课堂小结:在这节课里,我们复习了列出一元一次方程解应用题的五个步骤和教科书第212页~216页上的内容,请同学们回家后把教科书上这5页再认真阅读一遍。
四、课外作业
教科书第242页复习题四A组的第5,6题。
补充题:
1.两数的和为27.14,差为2.22,求这两个数。(答案:14.68与12.46。)
提示:设小数为x,则大数为x+2.22。
2.两个正数的比为5:3,差为6,求这两个数。(答案:15与9。)
3.某工厂生产一种产品,经过技术革新后,每件产品的成本是37.4元,比革新前降低了15%。革新前每件产品的成本是多少元?(答案:44元)
4.在圆柱形容器甲中注满水,倒入圆柱形容器乙中,正好注满。已知圆柱形容器乙的高是圆柱形容器甲的高的一半,那么圆柱形容器乙的底面积与圆柱形容器甲的底面积之比是几比几?(答案:2:1。)
(1)判断下列方程是否是一元一次方程:
①-3x-6x2=7;( ) ② ( )
③5x+1-2x=3x-2; ( ) ④3y-4=2y+1. ( )
(2)判断下列方程的解法是否正确:
①解方程3y-4=y+3
解:3y-y=3+4,2y=7,y= ;( )
②解方程:0.4x-3=0.1x+2
解:0.4x+0.1x=2-3;0.5x=-1,x=-2;( )
③解方程
解:5x+15-2x-2=10,3x=-3,x=-1;
④解方程
解:2x-4+5-5x=-1,-3x=-2,x= .( )
二、填空题:
(1)若2(3-a)x-4=5是关于x的一元一次方程,则a≠ .
(2)关于x的方程ax=3的解是自然数,则整数a的值为: .
(3)方程5x-2(x-1)=17 的解是 .
(4)x=2是方程2x-3=m- 的解,则m= .
(5)若-2x2-5m+1=0 是关于x的一元一次方程,则m= .
(6)当y= 时,代数式5y+6与3y-2互为相反数.
(7)当m= 时,方程 的解为0.
(8)已知a≠0.则关于x的方程3ab-(a+b)x=(a-b)x的解为 .
三.选择题:
(1)方程ax=b的解是( ).
A.有一个解x= B.有无数个解
C.没有解 D.当a≠0时,x=
(2)解方程 ( x-1)=3,下列变形中,较简捷的是( )
A.方程两边都乘以4,得3( x-1)=12
B.去括号,得x- =3
C.两边同除以 ,得 x-1=4
D.整理,得
(3)方程2- 去分母得( )
A.2-2(2x-4)=-(x-7) B.12-2(2x-4)=-x-7
C.12-2(2x-4)=-(x-7) D.以上答案均不对
(4)若代数式 比 大1,则x的值是( ).
A.13 B. C.8 D.
(5)x=1是方程( )的解.
A.-
B.
C.2{3[4(5x-1)-8]-2}=8
D.4x+ =6x+
四、解下列方程:
(1)7(2x-1)-3(4x-1)=4(3x+2)-1;
(2) (5y+1)+ (1-y)= (9y+1)+ (1-3y);
(3) [ ( )-4 ]=x+2;
(4)
(5)
(6)
(7)
(8)20%+(1-20%)(320-x)=320×40%
五、解答下列各题:
(1)x等于什么数时,代数式 的值相等?
(2)y等于什么数时,代数式 的值比代数式 的值少3?
(3)当m等于什么数时,代数式2m- 的值与代数式 的值的和等于5?
(4)解下列关于x的方程:
①ax+b=bx+a;(a≠b);
② .
第四章 一元一次方程的应用(习题课)
一、目的要求
1.通过练习巩固学生已学过的列出一元一次方程解应用题的5个步骤和有关注意事项,特别是提高寻找相等关系,并把相等关系正确地表示成方程的能力。
2.通过练习使学生进一步领会采用代数方法解应用题的优越性。
二、内容分析
到现在为止,学生已经接触了列出一元一次方程解以下四类应用题:
1.和倍、差倍问题;
2.形积变化问题;
3.相遇问题;
4.追及问题,它与相遇问题统称行程问题(行程问题中还有一种“相背而行”的情况,我们把“相背而行”看作与“相向而行”在数学上同等,所以在教科书中没有提及。当两个沿着环形跑道运动时,“相向”与“相背”明显是一回事)。
通过这四类应用题,学生学习了列出一元一次方程应用题的方法(含五个步骤),了解了代数方法与算术方法的差别,并初步体会到代数方法由于使已知数、未知数处于平等地位,方程很容易列出,比算术解法优越(当然这不是绝对的),存在着算术解法比代数解法简捷的例子)。
本节课要复习列出一元一次方程解应用题的五个步骤以及前两类问题,并适当予以拓伸。
三、教学过程
复习提问:
1.列出一元一次方程解应用题的五个步骤分别是什么?其中关键步骤是哪一个?
2.什么叫做“弄清题意”?(“弄清题意”就是搞清楚题目的意思,弄懂每句话的意义,能够说出知的是什么,要求出的是什么。)
3.在把相等关系表示成方程时,要注意些什么?(把相等关系的左边、右边都表示成代数式,并且要使用统一的计量单位。)
引入新课:今天我们要通过做一些练习来巩固已经学过的列出一元一次方程解应用题的知识。
课堂练习:
1.某农具厂计划在6天内生产某种新式农具144件,第一天已生产了19件,后5天平均每天应当生产多少件?
提示:设后5天平均每天应当生产x件,根据题意,得
5x+19=144.
解得经x=25。
2.某厂前年年底还有一批职工住在平房里,去年这些职工中有25%搬进了新楼房,到年底这家工厂还有600名职工住在平房里,前年年底这家工厂有多少名职工住在平房里?
提示:设前年年底这家工厂还有x名职工住在平房里,根据题意,得
x-25%·x=600。
解得x=800。
3.在底面直径为12cm,高为20cm的圆柱形容器中注满水,倒入底面是边长为10cm的正方形的长方体容器,正好注满。这个长方体容器的高是多少?(在本题中,假设两个容器里的厚度都可以不考虑,π取近似值3.14。)
提示:设长方体容器的高为xcm,根据题意,得
,
3.14×720=100x。
解得 x=22.608。
4.请同学们根据一元一次方程
编一道应用题。
提示:可从编某数问题着手,先说“某数加上它的20%等于720,求某数”。然后把某数赋以实际意义,例如“初一(1)班张小红到去年年底已经在银行储蓄720元,比前年年底又增加了20%。张小红到前年年底在储蓄多少元?
课堂小结:在这节课里,我们复习了列出一元一次方程解应用题的五个步骤和教科书第212页~216页上的内容,请同学们回家后把教科书上这5页再认真阅读一遍。
四、课外作业
教科书第242页复习题四A组的第5,6题。
补充题:
1.两数的和为27.14,差为2.22,求这两个数。(答案:14.68与12.46。)
提示:设小数为x,则大数为x+2.22。
2.两个正数的比为5:3,差为6,求这两个数。(答案:15与9。)
3.某工厂生产一种产品,经过技术革新后,每件产品的成本是37.4元,比革新前降低了15%。革新前每件产品的成本是多少元?(答案:44元)
4.在圆柱形容器甲中注满水,倒入圆柱形容器乙中,正好注满。已知圆柱形容器乙的高是圆柱形容器甲的高的一半,那么圆柱形容器乙的底面积与圆柱形容器甲的底面积之比是几比几?(答案:2:1。)
全部回答
- 1楼网友:枭雄戏美人
- 2021-02-28 23:19
第3章 一元一次方程全章综合测试
(时间90分钟,满分100分)
一、填空题.(每小题3分,共24分)
1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.
2.若x=-1是方程2x-3a=7的解,则a=_______.
3.当x=______时,代数式 x-1和 的值互为相反数.
4.已知x的 与x的3倍的和比x的2倍少6,列出方程为________.
5.在方程4x+3y=1中,用x的代数式表示y,则y=________.
6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.
7.已知三个连续的偶数的和为60,则这三个数是________.
8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,则需________天完成.
二、选择题.(每小题3分,共30分)
9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为( ).
a.0 b.1 c.-2 d.-
10.方程│3x│=18的解的情况是( ).
a.有一个解是6 b.有两个解,是±6
c.无解 d.有无数个解
11.若方程2ax-3=5x+b无解,则a,b应满足( ).
a.a≠ ,b≠3 b.a= ,b=-3
c.a≠ ,b=-3 d.a= ,b≠-3
12.把方程 的分母化为整数后的方程是( ).
13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,两人同地、同时、同向起跑,t分钟后第一次相遇,t等于( ).
a.10分 b.15分 c.20分 d.30分
14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额( ).
a.增加10% b.减少10% c.不增也不减 d.减少1%
15.在梯形面积公式s= (a+b)h中,已知h=6厘米,a=3厘米,s=24平方厘米,则b=( )厘米.
a.1 b.5 c.3 d.4
16.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是( ).
a.从甲组调12人去乙组 b.从乙组调4人去甲组
c.从乙组调12人去甲组
d.从甲组调12人去乙组,或从乙组调4人去甲组
17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,一个队打了14场比赛,负了5场,共得19分,那么这个队胜了( )场.
a.3 b.4 c.5 d.6
18.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?( )
a.3个 b.4个 c.5个 d.6个
三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)
19.解方程: -9.5.
20.解方程: (x-1)- (3x+2)= - (x-1).
21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.
22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.
23.据了解,火车票价按“ ”的方法来确定.已知a站至h站总里程数为1500千米,全程参考价为180元.下表是沿途各站至h站的里程数:
车站名 a b c d e f g h
各站至h站
里程数(米) 1500 1130 910 622 402 219 72 0
例如:要确定从b站至e站火车票价,其票价为 =87.36≈87(元).
(1)求a站至f站的火车票价(结果精确到1元).
(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).
24.某公园的门票价格规定如下表:
购票人数 1~50人 51~100人 100人以上
票 价 5元 4.5元 4元
某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.
(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?
(2)两班各有多少名学生?(提示:本题应分情况讨论)
答案:
一、1.3
2.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)
3. (点拨:解方程 x-1=- ,得x= )
4. x+3x=2x-6 5.y= - x
6.525 (点拨:设标价为x元,则 =5%,解得x=525元)
7.18,20,22
8.4 [点拨:设需x天完成,则x( + )=1,解得x=4]
二、9.d
10.b (点拨:用分类讨论法:
当x≥0时,3x=18,∴x=6
当x<0时,-3=18,∴x=-6
故本题应选b)
11.d (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选d.)
12.b (点拨;在变形的过程中,利用分式的性质将分式的分子、分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)
13.c (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800米,列方程得260t+800=300t,解得t=20)
14.d
15.b (点拨:由公式s= (a+b)h,得b= -3=5厘米)
16.d 17.c
18.a (点拨:根据等式的性质2)
三、19.解:原方程变形为
200(2-3y)-4.5= -9.5
∴400-600y-4.5=1-100y-9.5
500y=404
∴y=
20.解:去分母,得
15(x-1)-8(3x+2)=2-30(x-1)
∴21x=63
∴x=3
21.解:设卡片的长度为x厘米,根据图意和题意,得
5x=3(x+10),解得x=15
所以需配正方形图片的边长为15-10=5(厘米)
答:需要配边长为5厘米的正方形图片.
22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故
100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171
解得x=3
答:原三位数是437.
23.解:(1)由已知可得 =0.12
a站至h站的实际里程数为1500-219=1281(千米)
所以a站至f站的火车票价为0.12×1281=153.72≈154(元)
(2)设王大妈实际乘车里程数为x千米,根据题意,得 =66
解得x=550,对照表格可知,d站与g站距离为550千米,所以王大妈是在d站或g站下的车.
24.解:(1)∵103>100
∴每张门票按4元收费的总票额为103×4=412(元)
可节省486-412=74(元)
(2)∵甲、乙两班共103人,甲班人数>乙班人数
∴甲班多于50人,乙班有两种情形:
①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得
5x+4.5(103-x)=486
解得x=45,∴103-45=58(人)
即甲班有58人,乙班有45人.
②若乙班超过50人,设乙班x人,则甲班有(103-x)人,
根据题意,得
4.5x+4.5(103-x)=486
∵此等式不成立,∴这种情况不存在.
故甲班为58人,乙班为45人.
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯