设f(x)=a/x+ x㏑x,g(x)=x^3-x^2-3.
答案:3 悬赏:80 手机版
解决时间 2021-02-03 12:04
- 提问者网友:记得曾经
- 2021-02-02 20:42
设f(x)=a/x+ x㏑x,g(x)=x^3-x^2-3.
最佳答案
- 五星知识达人网友:独钓一江月
- 2021-02-02 20:48
答案见图(h(x)的最大值是观察出来的)
全部回答
- 1楼网友:走死在岁月里
- 2021-02-02 22:12
最大整数M应为“g(x)的最小值-g(x)的最大值”吧?算出来是-5.(因为要M<=g(x1)-g(x2)的最小值)
- 2楼网友:一秋
- 2021-02-02 21:38
第一问:
g(x)的导函数3x^2-2x,在[0,2/3]上小于等于0,(2/3,2]上大于0
因此g(x)在2/3时取极小值-85/27,而显然g(2)=1>-3=g(0)是极大值
g(2)-g(2/3)略大于4,M=4
第二问:
即令f(x)在[1/2,2]上的极小值大于1=g(2)
(1)如果0≥a,f(x)是单调递增的,只需:
f(1/2)=2a-(1/2)*ln2≥1,解得a≥(1/2)((1/2)*ln2+1)>0,矛盾
(2)于是必须a>0,对f(x)求导,导函数为:
-a/x^2+lnx+1,是个单调递增函数,x=1/2时,它等于1-ln2-4a,
i)若此式非负,则f(x)是单调递增的,
即联立1-ln2-4a≥0与a≥(1/2)((1/2)*ln2+1)
两式矛盾,得不出符合题意的a
ii)此式为负时,a>(1-ln2)/4
又分两情况:
a)x=2时,若0≥-a/x^2+lnx+1=1+ln2-a/4,即a≥4(1+ln2)
则f(2)是极小值,令2ln2+a/2≥1,
联立求得a≥4(1+ln2)符合题意
b)若(1-ln2)/4解a/x0+x0lnx0≥1,联立(1-ln2)/4写了半天,还是有个方程不会解,郁闷...
看了楼上知道俺是如何舍近求远了!杯具!!
g(x)的导函数3x^2-2x,在[0,2/3]上小于等于0,(2/3,2]上大于0
因此g(x)在2/3时取极小值-85/27,而显然g(2)=1>-3=g(0)是极大值
g(2)-g(2/3)略大于4,M=4
第二问:
即令f(x)在[1/2,2]上的极小值大于1=g(2)
(1)如果0≥a,f(x)是单调递增的,只需:
f(1/2)=2a-(1/2)*ln2≥1,解得a≥(1/2)((1/2)*ln2+1)>0,矛盾
(2)于是必须a>0,对f(x)求导,导函数为:
-a/x^2+lnx+1,是个单调递增函数,x=1/2时,它等于1-ln2-4a,
i)若此式非负,则f(x)是单调递增的,
即联立1-ln2-4a≥0与a≥(1/2)((1/2)*ln2+1)
两式矛盾,得不出符合题意的a
ii)此式为负时,a>(1-ln2)/4
又分两情况:
a)x=2时,若0≥-a/x^2+lnx+1=1+ln2-a/4,即a≥4(1+ln2)
则f(2)是极小值,令2ln2+a/2≥1,
联立求得a≥4(1+ln2)符合题意
b)若(1-ln2)/4解a/x0+x0lnx0≥1,联立(1-ln2)/4写了半天,还是有个方程不会解,郁闷...
看了楼上知道俺是如何舍近求远了!杯具!!
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯