设fx是定义在R上的函数,对任意的X,Y∈R都有F(x+y)=f(x)*f(y),当且仅当x>0时,0<
答案:2 悬赏:50 手机版
解决时间 2021-02-13 01:54
- 提问者网友:雨不眠的下
- 2021-02-12 04:58
(1)求证f(0)=1 (2)当时x<0,比较f(x)与1的大小?
最佳答案
- 五星知识达人网友:轮獄道
- 2021-02-12 06:30
(1)
由题意f(1)=f(1+0)=f(1)f(0),因为f(1)≠0,所以f(0)=1
(2)
对任意x<0,有 f(0)=f(-x + x)= f(-x)f(x) = 1,
所以 f(x) = 1/f(-x)
因为此时 -x>0,所以 0
所以 f(x) = 1/f(-x) > 1
由题意f(1)=f(1+0)=f(1)f(0),因为f(1)≠0,所以f(0)=1
(2)
对任意x<0,有 f(0)=f(-x + x)= f(-x)f(x) = 1,
所以 f(x) = 1/f(-x)
因为此时 -x>0,所以 0
全部回答
- 1楼网友:持酒劝斜阳
- 2021-02-12 08:08
(1)
由题意f(1)=f(1+0)=f(1)f(0),因为f(1)≠0,所以f(0)=1
(2)
对任意x<0,有 f(0)=f(-x + x)= f(-x)f(x) = 1,
所以 f(x) = 1/f(-x)
因为此时 -x>0,所以 0<f(-x)<1
所以 f(x) = 1/f(-x) > 1
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯