如图,点E、A、B、F在同一条直线上,AD与BC交于点O,已知∠CAE=∠DBF,AC=BD.
说出∠CAD=∠DBC的理由.
如图,点E、A、B、F在同一条直线上,AD与BC交于点O,已知∠CAE=∠DBF,AC=BD.说出∠CAD=∠DBC的理由.
答案:2 悬赏:60 手机版
解决时间 2021-03-23 12:48
- 提问者网友:寂寞梧桐
- 2021-03-23 03:39
最佳答案
- 五星知识达人网友:廢物販賣機
- 2021-03-23 04:16
证明:∵∠CAE=∠DBF(已知),
∴∠CAB=∠DBA(等角的补角相等).
在△ABC和△DBA中
AC=BD(已知),
∠CAB=∠DBA,
AB=BA(公共边),
∴△ABC≌△DBA(SAS).
∴∠ABC=∠BAD(全等三角形的对应角相等).
∴∠CAB-∠BAD=∠DBA-∠ABC.
即:∠CAD=∠DBC.解析分析:本题可通过全等三角形来证得.三角形CAB和DBA中,已知的条件有AC=BD,公共边AB,只要再证得这两组对应边的夹角相等即可得出三角形全等的结论,我们已知了∠CAE=∠DBF,那么他们的补角就应该相等,即∠CAB=∠DBA,这样就构成了两三角形全等的条件(SAS),就能得出两三角形全等了,也就得出∠CAD=∠DBC.点评:本题考查了全等三角形的判定和性质;此题证明角相等,可以通过全等三角形来证明,要注意利用此题中的图形条件,等角的补角相等.
∴∠CAB=∠DBA(等角的补角相等).
在△ABC和△DBA中
AC=BD(已知),
∠CAB=∠DBA,
AB=BA(公共边),
∴△ABC≌△DBA(SAS).
∴∠ABC=∠BAD(全等三角形的对应角相等).
∴∠CAB-∠BAD=∠DBA-∠ABC.
即:∠CAD=∠DBC.解析分析:本题可通过全等三角形来证得.三角形CAB和DBA中,已知的条件有AC=BD,公共边AB,只要再证得这两组对应边的夹角相等即可得出三角形全等的结论,我们已知了∠CAE=∠DBF,那么他们的补角就应该相等,即∠CAB=∠DBA,这样就构成了两三角形全等的条件(SAS),就能得出两三角形全等了,也就得出∠CAD=∠DBC.点评:本题考查了全等三角形的判定和性质;此题证明角相等,可以通过全等三角形来证明,要注意利用此题中的图形条件,等角的补角相等.
全部回答
- 1楼网友:过活
- 2021-03-23 05:41
好好学习下
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯