解答题已知定义在R上的奇函数f(x),满足f(x)=f(x+4),且f(1)=-1,则
答案:2 悬赏:50 手机版
解决时间 2021-04-13 00:09
- 提问者网友:雾里闻花香
- 2021-04-12 01:13
解答题
已知定义在R上的奇函数f(x),满足f(x)=f(x+4),且f(1)=-1,则f(1)+f(2)…+f(10)的值为________.
最佳答案
- 五星知识达人网友:不想翻身的咸鱼
- 2021-04-12 02:40
解:∵f(x)=f(4+x),
故函数f(x)的周期为4.
∵定义在R上的奇函数f(x),
∴f(-x)=-f(x)
令x=0得f(0)=0;
令x=-2,得f(2)=-f(-2),又f(x)=f(4+x)中有:f(-2)=f(2),
∴f(2)=0,
类似地,有:f(3)=f(1)=-f(-1)=-1,
∴f(0)=0,f(1)=-1,f(2)=0,f(3)=1,
∴f(1)+f(2)+f(3)+…+f(10)=2(f(1)+f(2)+f(3)+f(4))+f(9)+f(10)
=2(f(1)+f(2)+f(3)+f(4))+f(1)+f(2)
=-1
故
故函数f(x)的周期为4.
∵定义在R上的奇函数f(x),
∴f(-x)=-f(x)
令x=0得f(0)=0;
令x=-2,得f(2)=-f(-2),又f(x)=f(4+x)中有:f(-2)=f(2),
∴f(2)=0,
类似地,有:f(3)=f(1)=-f(-1)=-1,
∴f(0)=0,f(1)=-1,f(2)=0,f(3)=1,
∴f(1)+f(2)+f(3)+…+f(10)=2(f(1)+f(2)+f(3)+f(4))+f(9)+f(10)
=2(f(1)+f(2)+f(3)+f(4))+f(1)+f(2)
=-1
故
全部回答
- 1楼网友:几近狂妄
- 2021-04-12 02:46
好好学习下
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯