永发信息网

如图,?ABCD的对角线AC,BD相交于点O,直线EF过点O,与AD、BC分别相交于点E、F,求证:无论EF绕点O怎么旋转,四边形ABCD的周长被EF分得的两部分都相

答案:2  悬赏:0  手机版
解决时间 2021-12-25 14:08
  • 提问者网友:暮烟疏雨之际
  • 2021-12-24 18:59
如图,?ABCD的对角线AC,BD相交于点O,直线EF过点O,与AD、BC分别相交于点E、F,求证:无论EF绕点O怎么旋转,四边形ABCD的周长被EF分得的两部分都相等.
最佳答案
  • 五星知识达人网友:骨子里都是戏
  • 2021-12-24 19:09
解:∵四边形ABCD是平行四边形,
∴AD∥BC,OA=OC,DA=BC,BA=DC,
∴∠OAE=∠OCF.
且∠AOE=∠COF.
∴△OAE≌△OCF.
∴AE=CF.
又DA=BC,
∴DE=BF.
∴AE+AB+BF=FC+DE.
即四边形ABCD的周长被EF分得的两部分都相等.解析分析:此题实际上只要证明了AE=CF就可以证明题目的结论,而要证明AE=CF,可以通过证明△OAE≌△OCF来得到,根据已知条件容易证明△OAE≌△OCF.点评:本题考查的是平行四边形的性质:对角线互相平分,利用这条性质再证明三角形全等,通过全等三角形的性质就可以证明题目的问题.
全部回答
  • 1楼网友:归鹤鸣
  • 2021-12-24 20:20
哦,回答的不错
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯