塑性力学的研究内容
答案:1 悬赏:10 手机版
解决时间 2021-01-15 10:28
- 提问者网友:自食苦果
- 2021-01-14 20:28
塑性力学的研究内容
最佳答案
- 五星知识达人网友:往事埋风中
- 2021-01-14 20:55
除上述基本理论以外,塑性力学还包括以下研究内容:
简单弹塑性问题经过简化只剩下一个独立变量的问题
这类问题有:
梁的弹塑性弯曲问题
如果像处理弹性弯曲问题一样引用平截面假设,则梁的弹塑性弯曲问题就成为一维问题目。在弯矩M的作用下,梁截面上的正应力分布为其中x为梁纵轴坐标,y为截面上的坐标, y=O对应于中性轴,I为截面绕中性轴的惯性矩。对一个宽为b、髙为h的矩形截面梁,。当最外层纤维的应力达到屈服极限时,作用在截面上的弯矩为弹性极限弯矩。如果弯矩继续增加,则外层纤维首先进入塑性变形阶段,从梁截面上看,塑性变形区随 弯矩的增加向中心发展,纯弹性变形区逐渐缩小。在极限情形,弹性区缩小为零。对于理想塑性材料,与极限情形对应的弯矩称为塑性极限弯矩,其值为这一结果意味着,如果允许梁内发生塑性变形,矩形截面梁的抗弯矩能力最多可以提髙50%。弯矩达到塑性极限弯矩前梁的变形仍属弹性量级。因此,在设计中可让梁内发生部分塑性变形以提高梁的承载能力。一般说来,梁的静不定次数(见静不定结构)愈高,承载能力提髙的幅度愈大。
受内压厚壁圆筒问题
研究对象是一个内半径为外半径为,并且受内压P作用的长厚壁筒。这是—个轴对称问题,可在以筒轴为z轴的柱坐标系中进行研究。若考虑轴向应力的情形,则壁内的 两个主应力为和,最大剪应力屈服条件可写成。根据弹性分析可知在内壁处最大。当压力时,内壁开始产生塑 性变形。塑性区随着压力的增加而向外扩展。在分析这一问题时,要区分弹性和塑性区,在不同区域中使用不同的应力-应变关系;另外还要求各物理参量(应力、应变 等)在弹性区和塑性区的交界面上满足连接条件和初始屈服条件。由这两个条件可定出弹塑性交界面的位置。 对于理想塑性材枓,当应力满足屈服条件时,材料可无限 制地发生塑性变形。但实际上,塑性区的变形受到外层 弹性区的约束,不能无限发展,材料处在约束塑性变形阶段。当塑性区扩展到外边界处时,外层的弹性约束消失,塑性变形可以自由发展,这时所对应的压力称为塑性极限压力,其值为。若在到达塑性极限压力前卸载,壁内就产生残余应力。再次加载时,应力将从 这个残余应力上增长。和简单拉伸时的情形一样,残余 应力可使弹性范围提髙到卸载前的最高值。利用残余应力的这一特性,可以延长大炮筒及其他压力赛器的使用寿命。
长柱体的塑性自由扭转问题
按照弹性力学中 解决此类问理的方法引进应力函数(见柱体扭转和弯曲),把不为零的剪应力表示为:
则平衡方程自动满足。最大剪应力出现在柱体边界上,式中▽为梯度算符。当扭矩增大到弹性极限时,边界上某些点处为剪切屈服极限,塑性变形首先在那些点产生。随着扭 矩的增大,塑性区向内发展.对于理想塑性材料,在塑性 区内为一常数。另外,从边界条件的要求可 知,边界上。塑性区内的函数可用边界上的等梯度斜面表示。取柱体的一个截面,当整个截面进入塑性 屈服阶段时,那些边界上的斜面汇交成一个在此截面上 的沙堆形状包络面,沙堆体积的两倍对应于塑性极限扭矩。这种用沙堆体积计算柱体极限扭矩的方法就称为塑性扭转问题中的沙堆比拟法,通过它可以求得较复杂截 面柱的极限弯矩和剪应力分布规律。 这类问题可分为:
塑性平面应变问题
金属压力加工中的薄板轧制、拉拔、挤压等问题即属于塑性平面应变问题。这种问题的特点是:应变被限制在一个平面内。这种问题的塑 性变形比弹性变形大得多,故可采用刚塑性模型。在 建工程中,边坡稳定问题和长条形地基基础问题等也可作为塑性平面应变问题。塑性平面应变问题有三个方程:两个平衡方程和一个屈服条件方程。如果边界上给定的是应力条件,则可利用三个方程求出应力的分布,而且不需要使用塑性本构关系。在得到问题的解后,应校核刚性区内各点的应力是否满足屈服条件,只有不满足屈服条件,解才算是一个静力允许解;另外,还要校核所得的解给出的位移速度能否满足位移速度的边界条件以及外 力在这个位移速度上是否作正功率的条件,如果又满足 这些条件,解才是一个完全解。塑性平面应变问题可以用滑移线法求解。对于土力学问题,在平衡方程中,还要考虑重力项。
塑性平面应力问题主要出现在薄板中。
有塑性变形的薄板中孔洞附近的应力集中问题、圆孔的扩张 问题和薄板的弯曲问题等均属塑性平面权力问题.在塑性平面应力问题中,沿厚度z方向的应力等于零。设在板平面内的主应力为,则屈服条件为。在应力满足屈服条件时,板中可能产生垂直于板平面的剪切滑动,造成在板平面上看来垂直于滑动方向的速度间断,并会引起厚度变化等复杂问题。 一个有实用价值的方法,又称上、下限法。上限法采用外力功等于内部耗散能以及结构的几何条件求塑性极限载荷,其值比完全解的塑性极限载荷大;下限法则用平衡条件、屈服条件以及力的边界条件求塑性极限载荷,其值比完全解的塑性极限载荷小
主应力法
在屈服条件中不考虑剪应力的贡献,并假定沿某一个轴主应力的分布是均匀的。用此法能获得各应力分量的分布规律。 常用的有弹塑性有限元和刚塑性有限元法,可得到变形体内的应力和应变分布规律。
简单弹塑性问题经过简化只剩下一个独立变量的问题
这类问题有:
梁的弹塑性弯曲问题
如果像处理弹性弯曲问题一样引用平截面假设,则梁的弹塑性弯曲问题就成为一维问题目。在弯矩M的作用下,梁截面上的正应力分布为其中x为梁纵轴坐标,y为截面上的坐标, y=O对应于中性轴,I为截面绕中性轴的惯性矩。对一个宽为b、髙为h的矩形截面梁,。当最外层纤维的应力达到屈服极限时,作用在截面上的弯矩为弹性极限弯矩。如果弯矩继续增加,则外层纤维首先进入塑性变形阶段,从梁截面上看,塑性变形区随 弯矩的增加向中心发展,纯弹性变形区逐渐缩小。在极限情形,弹性区缩小为零。对于理想塑性材料,与极限情形对应的弯矩称为塑性极限弯矩,其值为这一结果意味着,如果允许梁内发生塑性变形,矩形截面梁的抗弯矩能力最多可以提髙50%。弯矩达到塑性极限弯矩前梁的变形仍属弹性量级。因此,在设计中可让梁内发生部分塑性变形以提高梁的承载能力。一般说来,梁的静不定次数(见静不定结构)愈高,承载能力提髙的幅度愈大。
受内压厚壁圆筒问题
研究对象是一个内半径为外半径为,并且受内压P作用的长厚壁筒。这是—个轴对称问题,可在以筒轴为z轴的柱坐标系中进行研究。若考虑轴向应力的情形,则壁内的 两个主应力为和,最大剪应力屈服条件可写成。根据弹性分析可知在内壁处最大。当压力时,内壁开始产生塑 性变形。塑性区随着压力的增加而向外扩展。在分析这一问题时,要区分弹性和塑性区,在不同区域中使用不同的应力-应变关系;另外还要求各物理参量(应力、应变 等)在弹性区和塑性区的交界面上满足连接条件和初始屈服条件。由这两个条件可定出弹塑性交界面的位置。 对于理想塑性材枓,当应力满足屈服条件时,材料可无限 制地发生塑性变形。但实际上,塑性区的变形受到外层 弹性区的约束,不能无限发展,材料处在约束塑性变形阶段。当塑性区扩展到外边界处时,外层的弹性约束消失,塑性变形可以自由发展,这时所对应的压力称为塑性极限压力,其值为。若在到达塑性极限压力前卸载,壁内就产生残余应力。再次加载时,应力将从 这个残余应力上增长。和简单拉伸时的情形一样,残余 应力可使弹性范围提髙到卸载前的最高值。利用残余应力的这一特性,可以延长大炮筒及其他压力赛器的使用寿命。
长柱体的塑性自由扭转问题
按照弹性力学中 解决此类问理的方法引进应力函数(见柱体扭转和弯曲),把不为零的剪应力表示为:
则平衡方程自动满足。最大剪应力出现在柱体边界上,式中▽为梯度算符。当扭矩增大到弹性极限时,边界上某些点处为剪切屈服极限,塑性变形首先在那些点产生。随着扭 矩的增大,塑性区向内发展.对于理想塑性材料,在塑性 区内为一常数。另外,从边界条件的要求可 知,边界上。塑性区内的函数可用边界上的等梯度斜面表示。取柱体的一个截面,当整个截面进入塑性 屈服阶段时,那些边界上的斜面汇交成一个在此截面上 的沙堆形状包络面,沙堆体积的两倍对应于塑性极限扭矩。这种用沙堆体积计算柱体极限扭矩的方法就称为塑性扭转问题中的沙堆比拟法,通过它可以求得较复杂截 面柱的极限弯矩和剪应力分布规律。 这类问题可分为:
塑性平面应变问题
金属压力加工中的薄板轧制、拉拔、挤压等问题即属于塑性平面应变问题。这种问题的特点是:应变被限制在一个平面内。这种问题的塑 性变形比弹性变形大得多,故可采用刚塑性模型。在 建工程中,边坡稳定问题和长条形地基基础问题等也可作为塑性平面应变问题。塑性平面应变问题有三个方程:两个平衡方程和一个屈服条件方程。如果边界上给定的是应力条件,则可利用三个方程求出应力的分布,而且不需要使用塑性本构关系。在得到问题的解后,应校核刚性区内各点的应力是否满足屈服条件,只有不满足屈服条件,解才算是一个静力允许解;另外,还要校核所得的解给出的位移速度能否满足位移速度的边界条件以及外 力在这个位移速度上是否作正功率的条件,如果又满足 这些条件,解才是一个完全解。塑性平面应变问题可以用滑移线法求解。对于土力学问题,在平衡方程中,还要考虑重力项。
塑性平面应力问题主要出现在薄板中。
有塑性变形的薄板中孔洞附近的应力集中问题、圆孔的扩张 问题和薄板的弯曲问题等均属塑性平面权力问题.在塑性平面应力问题中,沿厚度z方向的应力等于零。设在板平面内的主应力为,则屈服条件为。在应力满足屈服条件时,板中可能产生垂直于板平面的剪切滑动,造成在板平面上看来垂直于滑动方向的速度间断,并会引起厚度变化等复杂问题。 一个有实用价值的方法,又称上、下限法。上限法采用外力功等于内部耗散能以及结构的几何条件求塑性极限载荷,其值比完全解的塑性极限载荷大;下限法则用平衡条件、屈服条件以及力的边界条件求塑性极限载荷,其值比完全解的塑性极限载荷小
主应力法
在屈服条件中不考虑剪应力的贡献,并假定沿某一个轴主应力的分布是均匀的。用此法能获得各应力分量的分布规律。 常用的有弹塑性有限元和刚塑性有限元法,可得到变形体内的应力和应变分布规律。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯