已知函数f(x)和g(x)的定义域都是实数集R,f(x)是奇函数,g(x)是偶函数,且当x<0时,f'(x)g(x)+f(x)g'(x)>0,g(-2)=0,则不等式
答案:2 悬赏:0 手机版
解决时间 2021-04-05 08:13
- 提问者网友:雨不眠的下
- 2021-04-04 20:00
已知函数f(x)和g(x)的定义域都是实数集R,f(x)是奇函数,g(x)是偶函数,且当x<0时,f'(x)g(x)+f(x)g'(x)>0,g(-2)=0,则不等式f(x)g(x)>0的解集是________.
最佳答案
- 五星知识达人网友:等灯
- 2021-04-04 21:32
(-2,0)∪(2,+∞)解析分析:先根据f′(x)g(x)+f(x)g′(x)>0可确定[f(x)g(x)]'>0,进而可得到f(x)g(x)在x<0时递增,结合函数f(x)与g(x)的奇偶性可确定f(x)g(x)在x>0时也是增函数,最后根据g(2)=0可求得
全部回答
- 1楼网友:行路难
- 2021-04-04 23:00
谢谢回答!!!
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯