如图,在△ACB中,点D是AB边上的一点,且∠ACB=∠CDA;点E在BC边上,且点E到AC、AB的距离相等,连接AE交CD于点F.试判断△CEF的形状;并证明你的结
答案:2 悬赏:30 手机版
解决时间 2021-12-28 23:12
- 提问者网友:欲劫无渡
- 2021-12-28 01:30
如图,在△ACB中,点D是AB边上的一点,且∠ACB=∠CDA;点E在BC边上,且点E到AC、AB的距离相等,连接AE交CD于点F.试判断△CEF的形状;并证明你的结论.
最佳答案
- 五星知识达人网友:春色三分
- 2021-12-28 02:55
解:△CEF是等腰三角形,理由如下:
证明:∵点E到AC、AB的距离相等,
∴点E在∠CAB的平分线上,
∴AE平分∠CAB,
∴∠CAE=∠BAE,
∵∠CEA=180°-∠CAE-∠ACB,∠DFA=180°-∠DAE-∠ADC.
∵∠ACB=∠CDA,
∴∠CEA=∠DFA,
∵∠DFA=∠CFE,
∴∠CEF=∠CFE,
∴CF=CE.
∴△CEF是等腰三角形.解析分析:根据角平分线上的点到两边的距离相等可知点E在∠CAB的角平分线上,再根据角平分线的性质可知∠CEF=∠CFE,即可得出CF=CE,即三角形为等腰三角形.点评:本题主要考查了等腰三角形的判定以及角平分线的性质,难度适中.
证明:∵点E到AC、AB的距离相等,
∴点E在∠CAB的平分线上,
∴AE平分∠CAB,
∴∠CAE=∠BAE,
∵∠CEA=180°-∠CAE-∠ACB,∠DFA=180°-∠DAE-∠ADC.
∵∠ACB=∠CDA,
∴∠CEA=∠DFA,
∵∠DFA=∠CFE,
∴∠CEF=∠CFE,
∴CF=CE.
∴△CEF是等腰三角形.解析分析:根据角平分线上的点到两边的距离相等可知点E在∠CAB的角平分线上,再根据角平分线的性质可知∠CEF=∠CFE,即可得出CF=CE,即三角形为等腰三角形.点评:本题主要考查了等腰三角形的判定以及角平分线的性质,难度适中.
全部回答
- 1楼网友:第幾種人
- 2021-12-28 03:22
就是这个解释
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯