已知向量a=(根号3,-1),b=(1/2,根号3/2),若存在非零实数k,t使得x=a+(t2-3)b,y=-ka+tb,且x垂直于y,试求
k+t2/t的最小值
已知向量a=(根号3,-1),b=(1/2,根号3/2),若存在非零实数k,t使得x=a+(t2-3)b,y=-ka+t
答案:1 悬赏:0 手机版
解决时间 2021-08-14 20:55
- 提问者网友:练爱
- 2021-08-14 13:32
最佳答案
- 五星知识达人网友:山有枢
- 2021-08-14 14:36
题目有点问题,t2没有定义
(1) 因为x垂直于y,所以x.y=0
即:(a+(t2-3)b).(-ka+tb)=0
-k*4+a.b(t-k(t2-3))+t(t2-3)*1=0
因为a.b=根号3*1/2+(-1)*根号3/2=0
所以-4k+t(t2-3)=0
k=t(t2-3)/4
(2)
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯