在圆O中,AB⊥CD,OE⊥BC,求证:OE=1/2AD
答案:1 悬赏:50 手机版
解决时间 2021-06-02 18:12
- 提问者网友:凉末
- 2021-06-02 03:03
在圆O中,AB⊥CD,OE⊥BC,求证:OE=1/2AD
最佳答案
- 五星知识达人网友:荒野風
- 2021-06-02 04:05
延长CO,交圆O于F,连接BF、DF
因为 CF是直径
所以 ∠CBF=90
所以 ∠ABC+∠ABF=90
因为 AB垂直CD
所以 ∠DCB+∠ABC=90
所以 ∠ABF=∠DCB
所以 BD弧=AF弧
所以 AD弧=BF弧
所以 AD=BF
因为 OE垂直BC
所以 E是BC中点
因为 O是CF中点
所以 OE是△CFB中位线
所以 OE=BF/2
所以 OE=AD/2
因为 CF是直径
所以 ∠CBF=90
所以 ∠ABC+∠ABF=90
因为 AB垂直CD
所以 ∠DCB+∠ABC=90
所以 ∠ABF=∠DCB
所以 BD弧=AF弧
所以 AD弧=BF弧
所以 AD=BF
因为 OE垂直BC
所以 E是BC中点
因为 O是CF中点
所以 OE是△CFB中位线
所以 OE=BF/2
所以 OE=AD/2
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯