选择题参数方程{x=4cosθ;y=3sinθ表示的曲线是什么样的椭圆,要有离心率,焦点.
选择题参数方程{x=4cosθ;y=3sinθ表示的曲线是什么样的椭圆,要有离心率,焦点.
答案:1 悬赏:70 手机版
解决时间 2021-08-17 18:01
- 提问者网友:藍了天白赴美
- 2021-08-17 07:44
最佳答案
- 五星知识达人网友:酒安江南
- 2021-08-17 09:17
x²=16cos²θ
y²=9sin²θ
因为sin²θ+cos²θ=1
x²/16+ y²/9= 1
a²=16,b²=9,a=4
c²=a²-b²=7 ,c= √7,焦点是 (-√7,0)(√7,0)
离心率 e= c/a= √7/4
再问: A(±√7,0)为焦点的椭圆 B以(±4.0)为焦点的椭圆 C离心率为√7/5的椭圆 D离心率为3/5的椭圆 选哪一个
再答: A啊,解题过程里已经说明了
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯