解答题
已知函数f(x)=ax4lnx+bx4-c(x>0)在x=1处取得极值-3-c,其中a,b,c为常数.
(1)试确定a,b的值;
(2)求函数f(x)的单调增区间;
(3)若对任意x>0,不等式f(x)≥-(c-1)4+(c-1)2-c+9恒成立,求c的取值范围.
解答题已知函数f(x)=ax4lnx+bx4-c(x>0)在x=1处取得极值-3-c,
答案:2 悬赏:70 手机版
解决时间 2021-03-22 22:43
- 提问者网友:伴风望海
- 2021-03-22 10:04
最佳答案
- 五星知识达人网友:神鬼未生
- 2020-03-22 01:11
解:(1)由题意知f(1)=-3-c,因此b-c=-3-c,从而b=-3.
又对f(x)求导得f′(x)=4ax3lnx+ax4=x3(4alnx+a+4b).
由题意f′(1)=0,因此a+4b=0,解得a=12.
(2)由(1)知f′(x)=48x3lnx(x>0),令f′(x)>0,解得x>1.
因此f(x)的单调递增区间为(1,+∞).
(3)由(2)知,f(x)在x=1处取得极小值f(1)=-3-c,此极小值也是最小值,
要使f(x)≥-(c-1)4+(c-1)2-c+9(x>0)恒成立,
即-3-c≥-(c-1)4+(c-1)2-c+9(x>0)恒成立,
令t=(c-1)2(t≥0),则t≥4或t≤-3(舍).
∴(c-1)2≥4,
解得c∈(-∞,-1]∪[3,+∞).解析分析:(1)由题意知f(1)=b-c=-3-c可求得b=-3,再由f′(1)=0,得a=12;(2)由f′(x)=48x3lnx>0,可求得f(x)的单调递增区间为(1,+∞);(3)由(2)知,f(x)在x=1处取得极小值f(1)=-3-c,此极小值也是最小值,由-3-c≥-(c-1)4+(c-1)2-c+9(x>0)恒成立即可求得c的范围.点评:本题考查导数在最大值、最小值问题中的应用,考查利用导数研究函数的单调性与极值,考查综合分析、运算能力,属于难题.
又对f(x)求导得f′(x)=4ax3lnx+ax4=x3(4alnx+a+4b).
由题意f′(1)=0,因此a+4b=0,解得a=12.
(2)由(1)知f′(x)=48x3lnx(x>0),令f′(x)>0,解得x>1.
因此f(x)的单调递增区间为(1,+∞).
(3)由(2)知,f(x)在x=1处取得极小值f(1)=-3-c,此极小值也是最小值,
要使f(x)≥-(c-1)4+(c-1)2-c+9(x>0)恒成立,
即-3-c≥-(c-1)4+(c-1)2-c+9(x>0)恒成立,
令t=(c-1)2(t≥0),则t≥4或t≤-3(舍).
∴(c-1)2≥4,
解得c∈(-∞,-1]∪[3,+∞).解析分析:(1)由题意知f(1)=b-c=-3-c可求得b=-3,再由f′(1)=0,得a=12;(2)由f′(x)=48x3lnx>0,可求得f(x)的单调递增区间为(1,+∞);(3)由(2)知,f(x)在x=1处取得极小值f(1)=-3-c,此极小值也是最小值,由-3-c≥-(c-1)4+(c-1)2-c+9(x>0)恒成立即可求得c的范围.点评:本题考查导数在最大值、最小值问题中的应用,考查利用导数研究函数的单调性与极值,考查综合分析、运算能力,属于难题.
全部回答
- 1楼网友:山君与见山
- 2021-01-30 03:32
感谢回答,我学习了
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯