已知函数f(x)=lnx-1/2ax^2-2x
(1)若a=-1/2 且关于x的方程f(x)=-1/2x+b在[1,4]上恰有两个不相等的实数根,求实数b的取值范围
(2)设各项为正的数列{an}满足:a1=1, a(n+1)=lnan+an+2 n∈n*
求证an<=2^n-1
已知函数f(x)=lnx-1/2ax^2-2x
(1)若a=-1/2 且关于x的方程f(x)=-1/2x+b在[1,4]上恰有两个不相等的实数根,求实数b的取值范围
(2)设各项为正的数列{an}满足:a1=1, a(n+1)=lnan+an+2 n∈n*
求证an<=2^n-1
1)lnx+1/4 x^2-2x=-1/2x+b
令 lnx+1/4 x^2-3/2x=b=F(X)
令F'(x)=1/x+1/2 x-3/2>0
x^2-3x+2>0
x>2或x<1
则在x>2或x<1F(x)单调递增,在(1,2)单调递减
所以极大值为F(1)=-5/4,极小值为F(2)=ln2-2, 最大值为F(4)=ln4-2,
由题意恰有两个不相等的实数根,即与直线Y=b有两个不同的交点,由图知ln2-2<b<=-5/4
2)证明:首先考察f(x)=lnx-(x-1)(x>=1) (与题目里的f(x)区别开来)
f(x)'=1/x-1=(1-x)/x<0
=>当x>=1时f(x)<=f(1)=>lnx-(x-1)<=0=>lnx<=x-1
对于本题,显然,a(n)>1
=>a(n+1)=ln(a(n))+a(n)+2<=a(n)-1+a(n)+2=2a(n)+1
=>a(n+1)+1<=2(a(n)+1)....<=2^n(a(1)+1)=2^(n+1)
=>A(n+1)<=2^(n+1)-1
将n+1替换成n有
An≤2^n -1
证毕!