1、设Y=2X-5X2,问X等于多少时Y最大?并求出其最大值。
2、求函数y=x2-54/x.(x<0=的最小值。
3、求抛物线y=x2-4x+3在其顶点处的曲率半径。
4、相对数函数y=㏑x上哪一点处的曲线半径最小?求出该点处的曲率半径。
5、求y=x2与直线y=x及y=2x所围图形的面积。
6、求y=ex,y=e-x与直线x=1所围图形的面积。
7、求过(1,1,-1),(-2,-2,2)和(1,-1,2)三点的平面方程。
8、求过点(4,-1,3)且平行于直线(x-3)/2=y=(z-1)/5的直线方程。
9、求点(-1,2,0)在平面x+2y-z+1=0上的投影。
10、求曲线y=sinx,y=cosx直线x=0,x=л/2所围图形的面积。
11、求曲线y=3-2x-x2与x轴所围图形的面积。
12、求曲线y2=4(x-1)与y2=4(2-x)所围图形的面积。
13、求抛物线y=-x2+4x-3及其在点(0,3)和(3,0)得的切线所围成的图形的面积。9/4
14、求对数螺线r=eaθ及射线θ=-л,θ=л所围成的图形的面积。
15、求位于曲线y=ex下方,该曲线过原点的切线的左方以及x轴上方之间的图形的面积。
16、求由抛物线y2=4ax与过焦点的弦所围成的图形面积的最小值。
17、求曲线y=x2与x=y2绕y轴旋转所产生旋转体的体积。
18、求曲线y=achx/a,x=0,y=0,绕x轴所产生旋转体的体积。
19、求曲线x2+(y-5)2=16绕x轴所产生旋转体的体积。
20、求x2+y2=a2,绕x=-b,旋转所成旋转体的体积。
21、求椭圆x2/4+y2/6=1绕轴旋转所得旋转体的体积。
22、摆线x=a(t-sint),y=a(1-cost)的一拱,y=0所围图形绕y=2a(a>0)旋转所得旋转体体积。
23、计算曲线上相应于的一段弧的长度。
24、计算曲线y=x/3(3-x)上相应于1≤x≤3的一段弧的长度。
25、计算半立方抛物线y2=2/3(x-1)3被抛物线y2=x/3截得的一段弧的长度。
26、计算抛物线y2=2px从顶点到这典线上的一点M(x,y)的弧长。
27、求对数螺线r=eaθ自θ=0到θ=ψ的一段弧长。
28、求曲线rθ=1自θ=3/4至θ4/3的一段弧长。
29、求心形线r=a(1+cosθ)的全长。
30、求点M(4,-3,5)与原点的距离。
31、在yoz平面上,求与三已知点A(3,1,2),B(4,-2,-2)和C(0,5,1)等距离的点。
32、设U=a-b+2c,V=-a+3b-c,试用a,b,c表示2U-3V。
33、一动点与两定点(2,3,1)和(4,5,6)等距离。求这动点的轨迹方程。
34、将xoz坐标面上的抛物线z2=5x绕轴旋转一周,求所生成的旋轴曲方程。
35、将xoy坐标面上的圆x2+y2=9绕Z轴旋转一周,求所生成的旋转曲面的方程。
36、将xoy坐标面上的双曲线4x2-9y2=36分别绕x轴及y轴旋转一周,求所生成的旋转曲面的方程。
37、求球面x2+y2+z2=9与平面x+z=1的交线在xoy面上的投影方程。
38、求球体x2+(y-1)2+(z-2)2≤9在xy平面上的投影方程。
39、求过点(3,0,-1),且与平面3x-7x+5z-12=0平行的平面方程。
40、求过点M0(2,9,-6)且与连接坐标原点及点M0的线段OM0垂直的平面方程。
41、求过(1,1,1),(-2,-2,2)和(1,-1,2)三点的平面方程。
42、一平面过点(1,0,-1)且平行于向量a={2,1,1}和b={1,-1,0},试求这平面方程。
43、求平面2x-y+2z-8=0及x+y+z-10=0夹角弦。
44、求过点(4,-1,3)且平行于直线(x-3)/2=y=(z-1)/5的直线方程。
45、求过两点M(3,-2,1)和M(-1,0,2)的直线方程。
46、求过点(0,2,4)且与两平面x+2z=1和y-3z=z平行的直线方程。
47、求过点(3,1,-2)且通过直线(x-4)/5=(y+3)/2+z/1的平面方程。
48、求点(-1,2,0)在平面x+2y-z+1=0上的投影。
49、求点P(3,-1,2)到直线x+2y-z+1=0的距离。
50、求直线2x-4y+z=0,3X-y-2z=0在平面4x-y+z=1上的投影直线的方程。