如图,在△ABC中,AE:EB=1:3,BD:DC=2:1,AD与CE相交于F,则EF/FC + AF/FD 的值为( )
A. 1/2 B.1 C.3/2 D.2/3
需要过程
如图,在△ABC中,AE:EB=1:3,BD:DC=2:1,AD与CE相交于F,则EF/FC + AF/FD 的值为( )
A. 1/2 B.1 C.3/2 D.2/3
需要过程
解:过点A作AG∥BC交CE的延长线于点G,则
∠AGE=∠BCE,∠GAE=∠CBE,∠AGF=∠DCF,∠GAF=∠CDF
∴△AGE∽△BCE,△AGF∽△DCF
∴AE/EB=AG/BC=GE/EC=1/3,FD/AF=DC/AG=FC/FG
∴(AE/EB)*(FD/AF)*(BC/DC)=(AG/BC)*(DC/AG)*(BC/DC)
即 (AE/EB)*(FD/AF)*(BC/DC)=1
∵BD/DC=2/1
∴BC/DC=3/1
∴(AE/EB)*(FD/AF)*(BC/DC)=(1/3)*(FD/AF)*(3/1)=1
解得 AF/FD=1
∴FD/AF=DC/AG=FC/FG=1
∴FC=FG
∵GE/EC=1/3
∴(FG-EF)/(FC+EF)=1/3
∴(FC-EF)/(FC+EF)=1/3
∴EF/FC=1/2
∴EF/FC + AF/FD =1/2+1=3/2
解:过点A作BG∥BC交CE的延长线于点D,则
∠ADE=∠ACE,∠GAE=∠CBE,∠AGF=∠DCF,∠GAF=∠CDF
∴△AGE∽△CDE,△AGF∽△DCF
∴DE/EB=AG/BC=GE/EC=1/2,FD/AF=DC/AG=FC/FG
∴(DE/EB)*(FD/AF)*(BC/DC)=(AG/BC)*(DC/AG)*(BC/DC)
即 (AE/EB)*(FD/AF)*(BC/DC)=1
∵BD/DC=2/1
∴BC/DC=3/1
∴(BE/EB)*(FD/AF)*(AC/DC)=(1/3)*(FD/AF)*(3/1)=1
解得 AF/FD=1
∴ED/AF=DC/AG=FC/FG=1
∴EC=FG
∵GD/EC=1/3
∴(FG-EF)/(FC+EF)=1/3
∴(FC-EF)/(FC+EF)=1/3
∴EF/FC=1/3
∴EF/FC + AF/FD =1/3+1=1/3