永发信息网

在直角三角形ABC中,角ACB等于90度,CD垂直AB,垂足为D,AF平分角CAB,交CD于E,交C

答案:2  悬赏:20  手机版
解决时间 2021-02-13 16:29
  • 提问者网友:活着好累
  • 2021-02-13 09:23
在直角三角形ABC中,角ACB等于90度,CD垂直AB,垂足为D,AF平分角CAB,交CD于E,交C
最佳答案
  • 五星知识达人网友:你可爱的野爹
  • 2021-02-13 10:49
(1)根据平分线的定义可知∠CAF=∠EAD,再根据已知条件以及等量代换即可证明CE=CF,(2)根据题意作辅助线过点E作EG⊥AC于G,根据平移的性质得出D′E′=DE,再根据已知条件判断出△CEG≌△BE′D′,可知CE=BE′,再根据等量代换可知BE′=CF.(1)证明:∵AF平分∠CAB,∴∠CAF=∠EAD,∵∠ACB=90°,∴∠CAF+∠CFA=90°,∵CD⊥AB于D,∴∠EAD+AED=90°,∴∠CFA=∠AED,∵∠AED=∠CEF,∴∠CFA=∠CEF,∴CE=CF;(2)BE′=CF.证明:如图,过点E作EG⊥AC于G,又∵AF平分∠CAB,ED⊥AB,∴ED=EG.由平移的性质可知:D′E′=DE,∴D′E′=GE,∵∠ACB=90°,∴∠ACD+∠DCB=90°∵CD⊥AB于D,∴∠B+∠DCB=90°,∴∠ACD=∠B,在Rt△CEG与Rt△BE′D′中,,∴△CEG≌△BE′D′,∴CE=BE′,由(1)可知CE=CF,∴BE′=CF.======以下答案可供参考======供参考答案1:(1)根据平分线的定义可知∠CAF=∠EAD,再根据已知条件以及等量代换即可证明CE=CF,(2)根据题意作辅助线过点E作EG⊥AC于G,根据平移的性质得出D′E′=DE,再根据已知条件判断出△CEG≌△BE′D′,可知CE=BE′,再根据等量代换可知BE′=CF.(1)证明:∵AF平分∠CAB,∴∠CAF=∠EAD,∵∠ACB=90°,∴∠CAF+∠CFA=90°,∵CD⊥AB于D,∴∠EAD+AED=90°,∴∠CFA=∠AED,∵∠AED=∠CEF,∴∠CFA=∠CEF,∴CE=CF;(2)BE′=CF.证明:如图,过点E作EG⊥AC于G,又∵AF平分∠CAB,ED⊥AB,∴ED=EG.由平移的性质可知:D′E′=DE,∴D′E′=GE,∵∠ACB=90°,∴∠ACD+∠DCB=90°∵CD⊥AB于D,∴∠B+∠DCB=90°,∴∠ACD=∠B,在Rt△CEG与Rt△BE′D′中, ,∴△CEG≌△BE′D′,∴CE=BE′,由(1)可知CE=CF,∴BE′=CF. 在直角三角形ABC中,角ACB等于90度,CD垂直AB,垂足为D,AF平分角CAB,交CD于E,交CB于F.将三角形ADE沿AB向右平移到三角形A'D'F'的位置,使点E'落在BC边上,其它条件不变,问:BE 'CF有怎样的数量关系?(图1)答案网 www.Zqnf.com
全部回答
  • 1楼网友:轮獄道
  • 2021-02-13 12:00
我好好复习下
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯