永发信息网

单选题已知A与B是集合{1,2,3,…,100}的两个子集,满足:A与B的元素个数相同

答案:2  悬赏:10  手机版
解决时间 2021-12-17 23:18
  • 提问者网友:且恨且铭记
  • 2021-12-17 19:56
单选题 已知A与B是集合{1,2,3,…,100}的两个子集,满足:A与B的元素个数相同,且为A∩B空集。若n∈A时总有2n+2∈B,则集合A∪B的元素个数最多为A.62B.66C.68D.74
最佳答案
  • 五星知识达人网友:西风乍起
  • 2021-12-17 20:48
B解析先证|A∪B|≤66,只须证|A|≤33,为此只须证若A是{1,2,…,49}的任一个34元子集,则必存在n∈A,使得2n+2∈B。证明如下:将{1,2,…,49}分成如下33个集合:{1,4},{3,8},{5,12},…,{23,48}共12个;{2,6},{10,22},{14,30},{18,38}共4个;{25},{27},{29},…,{49}共13个;{26},{34},{42},{46}共4个。由于A是{1,2,…,49}的34元子集,从而由抽屉原理可知上述33个集合中至少有一个2元集合中的数均属于A,即存在n∈A,使得2n+2∈B。如取A={1,3,5,…,23,2,10,14,18,25,27,29,…,49,26,34,42,46},B={2n+2|n∈A},则A、B满足题设且|A∪B|≤66。
全部回答
  • 1楼网友:罪歌
  • 2021-12-17 21:40
正好我需要
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯