如图,在梯形ABCD中,AD∥BC,AB=DC,点E在BC上,DE∥AB且平分∠ADC,则∠C=________°.
答案:2 悬赏:20 手机版
解决时间 2021-12-29 15:19
- 提问者网友:贪了杯
- 2021-12-29 09:32
如图,在梯形ABCD中,AD∥BC,AB=DC,点E在BC上,DE∥AB且平分∠ADC,则∠C=________°.
最佳答案
- 五星知识达人网友:几近狂妄
- 2021-12-29 10:42
60解析分析:先判定四边形ABED是平行四边形,根据平行四边形对边相等可得AB=DE,从而求出CD=DE,根据等边对等角可得∠DEC=∠C,再根据角平分线的定义可得∠ADE=∠CDE,再根据两直线平行,内错角相等求出∠ADE=∠DEC,然后求出∠CDE=∠DEC,从而得到∠CDE=∠DEC=∠C,再利用三角形的内角和等于180°列式进行计算即可得解.解答:∵AD∥BC,DE∥AB,
∴四边形ABED是平行四边形,
∴AB=DE,
∵AB=DC,
∴CD=DE,
∴∠DEC=∠C,
∵DE是∠ADC的平分线,
∴∠ADE=∠CDE,
∵AD∥BC,
∴∠ADE=∠DEC,
∴∠CDE=∠DEC,
∴∠CDE=∠DEC=∠C,
在△CDE中,∠CDE+∠DEC+∠C=3∠C=180°,
解得∠C=60°.
故
∴四边形ABED是平行四边形,
∴AB=DE,
∵AB=DC,
∴CD=DE,
∴∠DEC=∠C,
∵DE是∠ADC的平分线,
∴∠ADE=∠CDE,
∵AD∥BC,
∴∠ADE=∠DEC,
∴∠CDE=∠DEC,
∴∠CDE=∠DEC=∠C,
在△CDE中,∠CDE+∠DEC+∠C=3∠C=180°,
解得∠C=60°.
故
全部回答
- 1楼网友:走死在岁月里
- 2021-12-29 11:33
我也是这个答案
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯