函数f(x)=ax2+2x+1,若对任意x∈[1,+∞),f(x)>0恒成立,则实数a的取值范围是______.
函数f(x)=ax2+2x+1,若对任意x∈[1,+∞),f(x)>0恒成立,则实数a的取值范围是______.
答案:1 悬赏:30 手机版
解决时间 2021-05-23 02:03
- 提问者网友:轮囘Li巡影
- 2021-05-22 18:43
最佳答案
- 五星知识达人网友:纵马山川剑自提
- 2021-05-22 19:36
当a=0时,函数f(x)=ax2+2x+1化为f(x)=2x+1,满足对任意x∈[1,+∞),f(x)>0恒成立;
当a≠0时,要使对任意x∈[1,+∞),f(x)>0恒成立,
则
a>0
△=22?4a<0①
或
a>0
△=22?4a≥0
?
1
a≤1
f(1)>0,即
a>0
4?4a≥0
?
1
a≤1
a+3>0②
解①得,a>1.
解②得,0<a≤1.
综上,对任意x∈[1,+∞),f(x)>0恒成立的实数a的取值范围是a≥0.
故答案为a≥0.
试题解析:
要使函数f(x)=ax2+2x+1对任意x∈[1,+∞),都有f(x)>0恒成立,a有可能等于0或大于0,然后分这两种情况讨论,a=0时为一次函数,显然成立;a>0时,又分判别式小于0和大于等于0两种情况,特别是判别式大于0时,需借助于二次函数的对称轴及f(1)的符号列式求解.
名师点评:
本题考点: 二次函数的性质.
考点点评: 本题考查了二次函数的性质,考查了分类讨论的数学思想方法,训练了利用“三个二次”的结合求解参数问题,是中档题.
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯