已知函数f(x)=x^2-alnx(a∈R),g(x)=x^2+(a+2)x+1
答案:2 悬赏:0 手机版
解决时间 2021-12-23 09:22
- 提问者网友:锁深秋
- 2021-12-22 18:44
若a>0,且对任意x1∈[-1,2],都存在x∈(0,+∞),使得g(x1)=f(x2),求a的取值范围
最佳答案
- 五星知识达人网友:我住北渡口
- 2021-12-22 18:56
原题是:已知函数f(x)=x^2-alnx(a∈R),g(x)=x^2+(a+2)x+1.若a>0,且对任意x1∈[-1,2],都存在x2∈(0,+∞),使得g(x1)=f(x2),求a的取值范围.
解:当a>0时
f'(x)=2x-a/x=(x^2-a/2).(2/x) (x>0)
当0<x<√(a/2)时,f'(x)<0,f(x)在其上单减,
当x>√(a/2)时,f'(x)>0,f(x)在其上单增
f'(√(a/2))=0,f(x)在x=√(a/2)处取极小值,也是最小值f(√(a/2))=(a/2)(1-ln(a/2))
又x→0+时,f(x)=x^2-alnx→+∞.
得f(x)的值域是[(a/2)(1-ln(a/2)),+∞)
g(x)=(x+(a+2)/2)^2+1-(a+2)^2/4
其图像开口向上,对称轴x=-(a+2)/2<-1
得g(x)在[-1,2]上单增,在其上的值域是[-a,2a+9]
由已知得a可取的充要条件是:
a>0 且 2a+9≥(a/2)(1-ln(a/2))
即 a>0 且 (18/a)+ln(a)-ln2+3>0
设h(a)=(18/a)+ln(a)-ln2+3 (a>0)
h'(a)=(-18/a^2)+(1/a)=(a-18)/a^2 (a>0)
当0<a<18时,h'(a)<0,h(a)在其上单减,
当a>18时,h'(a)>0,h(a)在其上单增,
h'(18)=0,h(a)在a=18处取极小值,也是最小值h(18)=4+2ln3>0
即对一切 a>0,(18/a)+ln(a)-ln2+3>0恒成立。
所以所求a的取值范围是a>0.
(题目中:x∈(0,+∞),应是:x2∈(0,+∞))
希望对你有点帮助!
解:当a>0时
f'(x)=2x-a/x=(x^2-a/2).(2/x) (x>0)
当0<x<√(a/2)时,f'(x)<0,f(x)在其上单减,
当x>√(a/2)时,f'(x)>0,f(x)在其上单增
f'(√(a/2))=0,f(x)在x=√(a/2)处取极小值,也是最小值f(√(a/2))=(a/2)(1-ln(a/2))
又x→0+时,f(x)=x^2-alnx→+∞.
得f(x)的值域是[(a/2)(1-ln(a/2)),+∞)
g(x)=(x+(a+2)/2)^2+1-(a+2)^2/4
其图像开口向上,对称轴x=-(a+2)/2<-1
得g(x)在[-1,2]上单增,在其上的值域是[-a,2a+9]
由已知得a可取的充要条件是:
a>0 且 2a+9≥(a/2)(1-ln(a/2))
即 a>0 且 (18/a)+ln(a)-ln2+3>0
设h(a)=(18/a)+ln(a)-ln2+3 (a>0)
h'(a)=(-18/a^2)+(1/a)=(a-18)/a^2 (a>0)
当0<a<18时,h'(a)<0,h(a)在其上单减,
当a>18时,h'(a)>0,h(a)在其上单增,
h'(18)=0,h(a)在a=18处取极小值,也是最小值h(18)=4+2ln3>0
即对一切 a>0,(18/a)+ln(a)-ln2+3>0恒成立。
所以所求a的取值范围是a>0.
(题目中:x∈(0,+∞),应是:x2∈(0,+∞))
希望对你有点帮助!
全部回答
- 1楼网友:胯下狙击手
- 2021-12-22 19:11
x2+(2a-1)x-alnx)=-4/x-alnx
x^2+(2a-1)x=-4/x
x^3+(2a-1)x^2+4=0
在x∈[1,3]有两个不的实根。
设y=x^3+(2a-1)x^2+4,在x∈[1,3],它与x轴有两个不同的交点。所以其必须在x∈[1,3]取到极值
y'=3x^2+(4a-2)x=0
x=0或x=(2-4a)/3
x=0不在[1,3]内,不考虑。
所以:(2-4a)/3∈[1,3]
2-4a∈[3,9]
-4a∈[1,7]
a∈[-7/4,-1/4]
同时,两个交点还要在[1,3]内:
所y(1)*y(3)>=0
[1^3+(2a-1)1^2+4][3^3+(2a-1)3^2+4]>=0
(1+2a-1+4)(27+18a-9+4)>=0
(2a+4)(18a+22)>=0
a>=-11/9,或a联立a∈[-7/4,-1/4]
a∈[-11/9,-1/4]
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯