怎样学好二次函数
答案:5 悬赏:40 手机版
解决时间 2021-03-25 17:43
- 提问者网友:伴风望海
- 2021-03-24 22:47
怎样学好二次函数
最佳答案
- 五星知识达人网友:零点过十分
- 2021-03-25 00:03
二次函数
二次函数与圆的知识一样,在初中数学占有重要的地位.对二次函数的考查经常跟方程等知识相结合.
概念与图像
重点难点
(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围.
(2)理解抛物线的有关概念,会用描点法画出二次函数y=ax2的图象,探索掌握二次函数的性质.
内容提要
(1)形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
(2)当aO时,函数值y随x的增大而减小,当x=0时,函数值y=ax2取得最大值,最大值是y=0.
典型一例
某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.
求增种树的棵数与橙子总产量之间的函数关系.
解:假设果园增种x棵橙子树,果园橙子的总产量为y(个),依题意,果园共有(100+x)棵树,平均每棵树结(600-5x)个橙子.
y=(100+x)(600-5x)
=-5x²+100x+60000.
图象性质
重点难点
(1)确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标,理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系,理解函数y=a(x-h)2+k的性质.
(2)正确理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系以及函数y=a(x-h)2+k的性质是难点.
探索求知
1.你能发现函数y=2(x-1)2+1的图象有哪些性质吗?
函数y=2(x-1)2+1的图象可以看成是将函数y=2(x-1)2的图象向上平称1个单位得到的,也可以看成是将函数y=2x2的图象向右平移1个单位再向上平移1个单位得到的.
当x<1时,函数值y随x的增大而减小,当x>1时,函数值y随x的增大而增大;当x=1时,函数取得最小值,最小值y=1.
2.你能说出函数y=-13(x-1)2+2的图象与函数y=-13x2的图象的关系,由此进一步说出这个函数图象的开口方向、对称轴和顶点坐标吗?
函数y=-13(x-1)2+2的图象可以看成是将函数y=-13x2的图象向右平移一个单位再向上平移2个单位得到的,其开口向下,对称轴为直线x=1,顶点坐标是(1,2)
描点法
重点难点
(1)用描点法画出二次函数y=ax2+bx+c的图象;通过配方确定抛物线的对称轴、顶点坐标.
(2)理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-b2a、(-b2a,4ac-b24a)是难点.
探索求知
1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?
函数y=-4(x-2)2+1图象的开口向下,对称轴为直线x=2,顶点坐标是(2,1).
2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?
函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的.
3.函数y=-4(x-2)2+1具有哪些性质?
当x<2时,函数值y随x的增大而增大,当x>2时,函数值y随x的增大而减小;当x=2时,函数取得最大值,最大值y=1.
4.不画出图象,你能直接说出函数y=-12x2+x-52的图象的开口方向、对称轴和顶点坐标吗?
因为y=-12x2+x-52=-12(x-1)2-2,所以这个函数的图象开口向下,对称轴为直线x=1,顶点坐标为(1,-2).
经典一例
请画出函数y=-12x2+x-52的图象,并说明这个函数具有哪些性质.
分析:由以上探索求知,大家已经知道函数y=-12x2+x-52的图象的开口方向、对称轴和顶点坐标.根据这些特点,可以采用描点法作图的方法作出函数y=-12x2+x-52的图象,进而观察得到这个函数的性质.
解:(1)列表:在x的取值范围内列出函数对应值表;
x … -2 -1 0 1 2 3 4 …
y … -612
-4 -212
-2 -212
-4 -612
…
(2)描点:用表格里各组对应值作为点的坐标,在平面直角坐标系中描点.
(3)连线:用光滑的曲线顺次连接各点,得到函数y=-12x2+x-52的图象.
说明:(1)列表时,应根据对称轴是x=1,以1为中心,对称地选取自变量的值,求出相应的函数值。相应的函数值是相等的.
(2)直角坐标系中x轴、y轴的长度单位可以任意定,且允许x轴、y轴选取的长度单位不同。所以要根据具体问题,选取适当的长度单位,使画出的图象美观.
则可得到这个函数的性质如下:
当x<1时,函数值y随x的增大而增大;当x>1时,函数值y随x的增大而减小;
当x=1时,函数取得最大值,最大值y=-2.
解决问题
重点难点
根据实际问题建立二次函数的数学模型,并确定二次函数自变量的范围,既是这部分知识的重点也是难点.
探索求知
1.通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标.
(1)y=6x2+12x; (2)y=-4x2+8x-10.
y=6(x+1)2-6,抛物线的开口向上,对称轴为x=-1,顶点坐标是(-1,-6);y=-4(x-1)2-6,抛物线开口向下,对称轴为x=1,顶点坐标是(1,-6).
2. 以上两个函数,哪个函数有最大值,哪个函数有最小值?说出两个函数的最大值、最小值分别是多少?
函数y=6x2+12x有最小值,最小值y=-6,函数y=-4x2+8x-10有最大值,最大值y=-6.
二次函数与圆的知识一样,在初中数学占有重要的地位.对二次函数的考查经常跟方程等知识相结合.
概念与图像
重点难点
(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围.
(2)理解抛物线的有关概念,会用描点法画出二次函数y=ax2的图象,探索掌握二次函数的性质.
内容提要
(1)形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
(2)当a
典型一例
某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.
求增种树的棵数与橙子总产量之间的函数关系.
解:假设果园增种x棵橙子树,果园橙子的总产量为y(个),依题意,果园共有(100+x)棵树,平均每棵树结(600-5x)个橙子.
y=(100+x)(600-5x)
=-5x²+100x+60000.
图象性质
重点难点
(1)确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标,理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系,理解函数y=a(x-h)2+k的性质.
(2)正确理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系以及函数y=a(x-h)2+k的性质是难点.
探索求知
1.你能发现函数y=2(x-1)2+1的图象有哪些性质吗?
函数y=2(x-1)2+1的图象可以看成是将函数y=2(x-1)2的图象向上平称1个单位得到的,也可以看成是将函数y=2x2的图象向右平移1个单位再向上平移1个单位得到的.
当x<1时,函数值y随x的增大而减小,当x>1时,函数值y随x的增大而增大;当x=1时,函数取得最小值,最小值y=1.
2.你能说出函数y=-13(x-1)2+2的图象与函数y=-13x2的图象的关系,由此进一步说出这个函数图象的开口方向、对称轴和顶点坐标吗?
函数y=-13(x-1)2+2的图象可以看成是将函数y=-13x2的图象向右平移一个单位再向上平移2个单位得到的,其开口向下,对称轴为直线x=1,顶点坐标是(1,2)
描点法
重点难点
(1)用描点法画出二次函数y=ax2+bx+c的图象;通过配方确定抛物线的对称轴、顶点坐标.
(2)理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-b2a、(-b2a,4ac-b24a)是难点.
探索求知
1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?
函数y=-4(x-2)2+1图象的开口向下,对称轴为直线x=2,顶点坐标是(2,1).
2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?
函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的.
3.函数y=-4(x-2)2+1具有哪些性质?
当x<2时,函数值y随x的增大而增大,当x>2时,函数值y随x的增大而减小;当x=2时,函数取得最大值,最大值y=1.
4.不画出图象,你能直接说出函数y=-12x2+x-52的图象的开口方向、对称轴和顶点坐标吗?
因为y=-12x2+x-52=-12(x-1)2-2,所以这个函数的图象开口向下,对称轴为直线x=1,顶点坐标为(1,-2).
经典一例
请画出函数y=-12x2+x-52的图象,并说明这个函数具有哪些性质.
分析:由以上探索求知,大家已经知道函数y=-12x2+x-52的图象的开口方向、对称轴和顶点坐标.根据这些特点,可以采用描点法作图的方法作出函数y=-12x2+x-52的图象,进而观察得到这个函数的性质.
解:(1)列表:在x的取值范围内列出函数对应值表;
x … -2 -1 0 1 2 3 4 …
y … -612
-4 -212
-2 -212
-4 -612
…
(2)描点:用表格里各组对应值作为点的坐标,在平面直角坐标系中描点.
(3)连线:用光滑的曲线顺次连接各点,得到函数y=-12x2+x-52的图象.
说明:(1)列表时,应根据对称轴是x=1,以1为中心,对称地选取自变量的值,求出相应的函数值。相应的函数值是相等的.
(2)直角坐标系中x轴、y轴的长度单位可以任意定,且允许x轴、y轴选取的长度单位不同。所以要根据具体问题,选取适当的长度单位,使画出的图象美观.
则可得到这个函数的性质如下:
当x<1时,函数值y随x的增大而增大;当x>1时,函数值y随x的增大而减小;
当x=1时,函数取得最大值,最大值y=-2.
解决问题
重点难点
根据实际问题建立二次函数的数学模型,并确定二次函数自变量的范围,既是这部分知识的重点也是难点.
探索求知
1.通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标.
(1)y=6x2+12x; (2)y=-4x2+8x-10.
y=6(x+1)2-6,抛物线的开口向上,对称轴为x=-1,顶点坐标是(-1,-6);y=-4(x-1)2-6,抛物线开口向下,对称轴为x=1,顶点坐标是(1,-6).
2. 以上两个函数,哪个函数有最大值,哪个函数有最小值?说出两个函数的最大值、最小值分别是多少?
函数y=6x2+12x有最小值,最小值y=-6,函数y=-4x2+8x-10有最大值,最大值y=-6.
全部回答
- 1楼网友:街头电车
- 2021-03-25 04:46
会画图很重要!
- 2楼网友:归鹤鸣
- 2021-03-25 03:12
一、理解二次函数的内涵及本质.
二次函数y=ax2 +bx+c(a≠0,a、b、c是常数)中含有两个变量x、y,我们只要先确定其中一个变量,就可利用解析式求出另一个变量,即得到一组解;而一组解就是一个点的坐标,实际上二次函数的图象就是由无数个这样的点构成的图形.
二、熟悉几个特殊型二次函数的图象及性质.
1、通过描点,观察y=ax2、y=ax2+k、y=a(x+h)2图象的形状及位置,熟悉各自图象的基本特征,反之根据抛物线的特征能迅速确定它是哪一种解析式.
2、理解图象的平移口诀“加上减下,加左减右”.
y=ax2→y=a(x+h)2+k “加上减下”是针对k而言的,“加左减右”是针对h而言的.
总之,如果两个二次函数的二次项系数相同,则它们的抛物线形状相同,由于顶点坐标不同,所以位置不同,而抛物线的平移实质上是顶点的平移,如果抛物线是一般形式,应先化为顶点式再平移.
3、通过描点画图、图象平移,理解并明确解析式的特征与图象的特征是完全相对应的,我们在解题时要做到胸中有图,看到函数就能在头脑中反映出它的图象的基本特征;
4、在熟悉函数图象的基础上,通过观察、分析抛物线的特征,来理解二次函数的增减性、极值等性质;利用图象来判别二次函数的系数a、b、c、△以及由系数组成的代数式的符号等问题.
三、要充分利用抛物线“顶点”的作用.
1、要能准确灵活地求出“顶点”.形如y=a(x+h)2+K→顶点(-h,k),对于其它形式的二次函数,我们可化为顶点式而求出顶点.
2、理解顶点、对称轴、函数最值三者的关系.若顶点为(-h,k),则对称轴为x=-h,y最大(小)=k;反之,若对称轴为x=m,y最值=n,则顶点为(m,n);理解它们之间的关系,在分析、解决问题时,可达到举一反三的效果.
3、利用顶点画草图.在大多数情况下,我们只需要画出草图能帮助我们分析、解决问题就行了,这时可根据抛物线顶点,结合开口方向,画出抛物线的大致图象.
四、理解掌握抛物线与坐标轴交点的求法.
一般地,点的坐标由横坐标和纵坐标组成,我们在求抛物线与坐标轴的交点时,可优先确定其中一个坐标,再利用解析式求出另一个坐标.如果方程无实数根,则说明抛物线与x轴无交点.
从以上求交点的过程可以看出,求交点的实质就是解方程,而且与方程的根的判别式联系起来,利用根的判别式判定抛物线与x轴的交点个数.
二次函数y=ax2 +bx+c(a≠0,a、b、c是常数)中含有两个变量x、y,我们只要先确定其中一个变量,就可利用解析式求出另一个变量,即得到一组解;而一组解就是一个点的坐标,实际上二次函数的图象就是由无数个这样的点构成的图形.
二、熟悉几个特殊型二次函数的图象及性质.
1、通过描点,观察y=ax2、y=ax2+k、y=a(x+h)2图象的形状及位置,熟悉各自图象的基本特征,反之根据抛物线的特征能迅速确定它是哪一种解析式.
2、理解图象的平移口诀“加上减下,加左减右”.
y=ax2→y=a(x+h)2+k “加上减下”是针对k而言的,“加左减右”是针对h而言的.
总之,如果两个二次函数的二次项系数相同,则它们的抛物线形状相同,由于顶点坐标不同,所以位置不同,而抛物线的平移实质上是顶点的平移,如果抛物线是一般形式,应先化为顶点式再平移.
3、通过描点画图、图象平移,理解并明确解析式的特征与图象的特征是完全相对应的,我们在解题时要做到胸中有图,看到函数就能在头脑中反映出它的图象的基本特征;
4、在熟悉函数图象的基础上,通过观察、分析抛物线的特征,来理解二次函数的增减性、极值等性质;利用图象来判别二次函数的系数a、b、c、△以及由系数组成的代数式的符号等问题.
三、要充分利用抛物线“顶点”的作用.
1、要能准确灵活地求出“顶点”.形如y=a(x+h)2+K→顶点(-h,k),对于其它形式的二次函数,我们可化为顶点式而求出顶点.
2、理解顶点、对称轴、函数最值三者的关系.若顶点为(-h,k),则对称轴为x=-h,y最大(小)=k;反之,若对称轴为x=m,y最值=n,则顶点为(m,n);理解它们之间的关系,在分析、解决问题时,可达到举一反三的效果.
3、利用顶点画草图.在大多数情况下,我们只需要画出草图能帮助我们分析、解决问题就行了,这时可根据抛物线顶点,结合开口方向,画出抛物线的大致图象.
四、理解掌握抛物线与坐标轴交点的求法.
一般地,点的坐标由横坐标和纵坐标组成,我们在求抛物线与坐标轴的交点时,可优先确定其中一个坐标,再利用解析式求出另一个坐标.如果方程无实数根,则说明抛物线与x轴无交点.
从以上求交点的过程可以看出,求交点的实质就是解方程,而且与方程的根的判别式联系起来,利用根的判别式判定抛物线与x轴的交点个数.
- 3楼网友:话散在刀尖上
- 2021-03-25 02:50
学好的方法是多见题 这么说吧 你初三1个学习能做出来3~4道中考的最后1题你考试就没什么问题 但前提是你多做 老师给的卷子要完成 多找练习 还有就是要问 这是我学好的方法不知道是否合适你
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯