还是圆的证明题(要过程)
如图,AB是半圆O的直径,点E是半圆上的一个动点(点E与点A B都不重合),点C是BE延长线上的一点,且CD⊥AB,垂足为D,CD与AE交与点H(点H与点A不重合)
已证明△AHD∽△CBD
连接HO,若CD=AB=2,求HD+HO的值
还是圆的证明题(要过程)
答案:1 悬赏:60 手机版
解决时间 2021-06-08 22:04
- 提问者网友:孤山下
- 2021-06-08 06:08
最佳答案
- 五星知识达人网友:荒野風
- 2021-06-08 06:33
1.连接AD,则AD⊥BC
又BD=DC
所以AB=AC
三角形ABD为直角三角形
所以角ABC=角ACB〈90
三角形ABC为锐角三角形
2.角ACB=角AEB
三角形CBF和三角形EBD是直角三角形
角ACB+角CBF=90
角AEB+角EBD=90
所以角CBF=角EBD
所以角BGE=角BEG
所以DG=DE
3.三角形AHD和三角形CBD都是直角三角形
∠EAB+∠EBA=90
∠BCD+∠ABE=90
所以∠BAE=∠BCD
所以三角形AHD与三角形CBD相似
设BD=x
因为AB是⊙O的直径,CD=AB=2,点E是半圆上一动点
故:OA=OB=1,∠AEB=90度
故:OD=1-x,AD=2-x
因为CD⊥AB
故:∠EAB=∠C=90度-∠B
故:tan∠EAB = HD /AD=tan∠C=BD/CD(或根据△AHD∽△CBD得出HD /AD = BD/CD)
故:HD= x(2-x)/2
故:根据勾股定理:HO²=OD²+DH²=(1-x)²+[ x(2-x)/2]²
= (x^4-4x³+8x²-8x+4)/ 4
= (x²-2x+2)²/4
故:HO=( x²-2x+2)/2
故:HD+HO= x(2-x)/2+( x²-2x+2)/2=1
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯