勒贝格测度的零测集
答案:1 悬赏:60 手机版
解决时间 2021-02-04 05:59
- 提问者网友:且恨且铭记
- 2021-02-03 13:06
勒贝格测度的零测集
最佳答案
- 五星知识达人网友:毛毛
- 2021-02-03 13:12
主条目:零测集
R的子集是零测集,如果对于每一个ε > 0,它都可以用可数个n个区间的乘积来覆盖,其总体积最多为ε。所有可数集都是零测集。
如果R的子集的豪斯多夫维数小于n,那么它就是关于n维勒贝格测度的零测集。在这里,豪斯多夫维数是相对于R上的欧几里得度量(或任何与其等价的利普希茨度量)。另一方面,一个集合可能拓扑维数小于n,但具有正的n维勒贝格测度。一个例子是史密斯-沃尔泰拉-康托尔集,它的拓扑维数为0,但1维勒贝格测度为正数。
为了证明某个给定的集合A是勒贝格可测的,我们通常尝试寻找一个“较好”的集合B,与A只相差一个零测集,然后证明B可以用开集或闭集的可数交集和并集生成。
R的子集是零测集,如果对于每一个ε > 0,它都可以用可数个n个区间的乘积来覆盖,其总体积最多为ε。所有可数集都是零测集。
如果R的子集的豪斯多夫维数小于n,那么它就是关于n维勒贝格测度的零测集。在这里,豪斯多夫维数是相对于R上的欧几里得度量(或任何与其等价的利普希茨度量)。另一方面,一个集合可能拓扑维数小于n,但具有正的n维勒贝格测度。一个例子是史密斯-沃尔泰拉-康托尔集,它的拓扑维数为0,但1维勒贝格测度为正数。
为了证明某个给定的集合A是勒贝格可测的,我们通常尝试寻找一个“较好”的集合B,与A只相差一个零测集,然后证明B可以用开集或闭集的可数交集和并集生成。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯