在直角梯形ABCD中,AB平行DC,角DAB=90度,AD=2DC=4
AB=6,动点M以1的速度从点A沿线段AB向B运动,同时P以同样速度从C沿
折线C-D-A运动,当M到B时,同时停止运动,过点M做直线L平行AD与线段CD交点为E,于折线A-C-B交点为Q,M运动时间为T。
1.:T=0.5时,QM长多少/
2当0<t <2时,以CPQ为顶点的三角形为直角三角形
3:当T>2时,PQ交线段A参与R ,问CQ比RQ是否为定值,若是求出定值。
1)过点C作CF⊥AB于F,则四边形AFCD为矩形,易知CF=4,AF=2,利用平行线分线段成比例定理的推论可知Rt△AQM∽Rt△ACF,那么可得比例线段,从而求出QM;
(2))由于∠DCA为锐角,故有两种情况:
①当∠CPQ=90°时,点P与点E重合,可得DE+CP=CD,从而可求t;②当∠PQC=90°时,如备用图1,容易证出Rt△PEQ∽Rt△QMA,再利用比例线段,结合EQ=EM-QM=4-2t,可求t;(3)) 为定值.当t>2时,如备用图2,先证明四边形AMQP为矩形,再利用平行线分线段成比例定理的推论可得△CRQ∽△CAB,再利用比例线段可求 .
解答:解:(1)过点C作CF⊥AB于F,则四边形AFCD为矩形.
∴CF=4,AF=2,
此时,Rt△AQM∽Rt△ACF,(2分)
∴ ,
即 ,
∴QM=1;(3分)
(2)∵∠DCA为锐角,故有两种情况:
①当∠CPQ=90°时,点P与点E重
此时DE+CP=CD,即t+t=2,∴t=1,(5分)
②当∠PQC=90°时,如备用图1,
此时Rt△PEQ∽Rt△QMA,∴ ,
由(1)知,EQ=EM-QM=4-2t,
而PE=PC-CE=PC-(DC-DE)=t-(2-t)=2t-2,
∴ ,
∴ ;
综上所述,t=1或 ;(8分)(说明:未综述,不扣分)
(3) 为定值.
当t>2时,如备用图2,
PA=DA-DP=4-(t-2)=6-t,
由(1)得,BF=AB-AF=4,
∴CF=BF,
∴∠CBF=45°,
∴QM=MB=6-t,
∴QM=PA,
∴四边形AMQP为矩形,
∴PQ∥AB,
∴△CRQ∽△CAB,
∴ CQ/RQ=BC/AB=三分之二倍根号二
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息