设随机变量X,Y相互独立,且都服从正态分布N(0,σ^2),求Z=(X^2+Y^2)^0.5的概率密度。
答案:1 悬赏:60 手机版
解决时间 2021-03-07 02:04
- 提问者网友:动次大次蹦擦擦
- 2021-03-06 17:29
设随机变量X,Y相互独立,且都服从正态分布N(0,σ^2),求Z=(X^2+Y^2)^0.5的概率密度。
最佳答案
- 五星知识达人网友:由着我着迷
- 2021-03-06 18:06
Z的分布叫做瑞利(Rayleigh)分布,具体求法:
f(x,y)=[1/(2πσ^2)]*e^-[(x^2+y^2)/2σ^2]
当z<0时,显然有f(z)=0
当z>=0时,有:
F(z)=∫∫f(x,y)dxdy,其中积分区域为x^2+y^2<=z^2
做变换x=r*sint,y=r*cost,则
F(z)=∫{0到2π}dt ∫{0到z}) [1/(2πσ^2)]*e^-[r^2/2σ^2] dr
=∫{0到z}) e^-[r^2/2σ^2] d(r^2/2σ^2)
=1-e^(-z^2/2σ^2)
接下来求概率密度就是求导,得:
f(z)=F'(z)=(z/σ^2)*e^(-z^2/2σ^2) (z>0)
f(x,y)=[1/(2πσ^2)]*e^-[(x^2+y^2)/2σ^2]
当z<0时,显然有f(z)=0
当z>=0时,有:
F(z)=∫∫f(x,y)dxdy,其中积分区域为x^2+y^2<=z^2
做变换x=r*sint,y=r*cost,则
F(z)=∫{0到2π}dt ∫{0到z}) [1/(2πσ^2)]*e^-[r^2/2σ^2] dr
=∫{0到z}) e^-[r^2/2σ^2] d(r^2/2σ^2)
=1-e^(-z^2/2σ^2)
接下来求概率密度就是求导,得:
f(z)=F'(z)=(z/σ^2)*e^(-z^2/2σ^2) (z>0)
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯