永发信息网

P是椭圆X2/a2+Y2/b2=1(a>b>0)上的任意一点,F1,F2是它的两个焦点,O为坐标原点,向量OQ=向量PF1+向量PF2,

答案:2  悬赏:40  手机版
解决时间 2021-12-23 06:33
  • 提问者网友:两耳就是菩提
  • 2021-12-22 19:37
P是椭圆X2/a2+Y2/b2=1(a>b>0)上的任意一点,F1,F2是它的两个焦点,O为坐标原点,向量OQ=向量PF1+向量PF2,求动点Q的轨迹方程
最佳答案
  • 五星知识达人网友:第四晚心情
  • 2021-12-22 20:40
不妨设F1为左焦点,F1(-f,0),P(x,y),则F2(f,0)
则向量PF1=(-f-x,0-y)=(-f-x,-y),向量PF2=(f-x,0-y)=(f-x,-y)
则向量OQ=向量PF1+向量PF2=(-f-x+f-x,-y+(-y))=(-2x,-2y)
由于O(0,0),所以Q(2x,2y)
由于P(x,y)在椭圆上,即x,y满足:x^2/a^2+y^2/b^2=1
则有2x,2y满足:(2x)^2/(2a)^2+(2y)^2/(2b)^2=1,注意到(2x,2y)正是Q的坐标
所以Q的轨迹方程为:x^2/(4a^2)+y^2/(4b^2)=1
全部回答
  • 1楼网友:拾荒鲤
  • 2021-12-22 22:19
支持一下感觉挺不错的
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯