问一道高中圆的方程的题
答案:2 悬赏:0 手机版
解决时间 2021-08-23 16:17
- 提问者网友:温柔港
- 2021-08-23 01:03
为什么经过两圆x^2+y^2+D1x+E1y+F1=0与x^2+y^2+D2x+E2y+F2=0 的交点圆系方程为: x^2+y^2+D1x+E1y+F1+λ(x^2+y^2+D2x+E2y+F2)=0 (λ≠-1)?
最佳答案
- 五星知识达人网友:大漠
- 2021-08-23 01:51
假设C1:(x-a)^2+(y-b)^2=c
C2: (x-d)^+(y-e)^2=f
他们有交点
那么过这两个交点的圆系方程就是
(x-a)^2+(y-b)^2-c+n((x-d)^+(y-e)^2-f)=0
你看如果把交点坐标代入得话得出的都是0+n*0=0
因为你把它展开,x和y的平方项都是(1+n)所以就保证了这是圆,且过C1、C2的交点
当然把系数加在了C2前面就不能表示 C2了
C2: (x-d)^+(y-e)^2=f
他们有交点
那么过这两个交点的圆系方程就是
(x-a)^2+(y-b)^2-c+n((x-d)^+(y-e)^2-f)=0
你看如果把交点坐标代入得话得出的都是0+n*0=0
因为你把它展开,x和y的平方项都是(1+n)所以就保证了这是圆,且过C1、C2的交点
当然把系数加在了C2前面就不能表示 C2了
全部回答
- 1楼网友:傲气稳了全场
- 2021-08-23 03:04
我还是没懂。。。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯