永发信息网

设ab属于R,且a不等于2,定义在区间(-b,b)内的函数f(x)=lg1+ax/1+2x是奇函数。

答案:2  悬赏:20  手机版
解决时间 2021-04-07 16:11
  • 提问者网友:了了无期
  • 2021-04-07 08:32
设ab属于R,且a不等于2,定义在区间(-b,b)内的函数f(x)=lg1+ax/1+2x是奇函数。
最佳答案
  • 五星知识达人网友:等灯
  • 2021-04-07 09:08
0<b<1/2,减函数

1、f(-x)=lg[(1-ax)/(1-2x)]=-f(x)=-lg[(1+ax)/(1+2x)]
所以,[(1-ax)/(1-2x)]×[(1+ax)/(1+2x)]=1,得1-4x^2=1-a^2x^2,所以a^2=4,a≠2,所以a=-2

f(x)=lg[(1-2x)/(1+2x)]的定义域是(-1/2,1/2),所以当0<b<1/2时,f(x)在区间(-b,b)内是奇函数

2、只考虑(0,1/2)内的单调性即可
(1-2x)/(1+2x)=2/(1+2x)-1,
因为y=1+2x是增函数,y=1/x是减函数,所以2/(1+2x)在(0,1/2)内是减函数,所以(1-2x)/(1+2x)是减函数
y=lgx在(0,1/2)内是增函数,所以f(x)=lg[(1-2x)/(1+2x)]在(0,1/2)内单调减少
又f(x)是奇函数,所以f(x)在(-b,b)内单调减少
全部回答
  • 1楼网友:往事埋风中
  • 2021-04-07 10:40
题目错了
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯