如图,oa⊥ob,oc⊥od,∠boc∶∠aod=1∶2,求∠boc的度数
答案:3 悬赏:80 手机版
解决时间 2021-02-26 00:48
- 提问者网友:wodetian
- 2021-02-25 08:25
如图,oa⊥ob,oc⊥od,∠boc∶∠aod=1∶2,求∠boc的度数
最佳答案
- 五星知识达人网友:老鼠爱大米
- 2021-02-25 08:45
∠BOC=60°
理由如下:
∠AOB=90°
∠COD=90°
那么∠AOD+∠BOC=360°-∠AOB-∠COD=180°
又因为∠BOC:∠AOD=1:2
所以设为∠BOCx,∠AOD为2x
则2x+x=180°,x=60°
所以可以得到∠BOC=60°
理由如下:
∠AOB=90°
∠COD=90°
那么∠AOD+∠BOC=360°-∠AOB-∠COD=180°
又因为∠BOC:∠AOD=1:2
所以设为∠BOCx,∠AOD为2x
则2x+x=180°,x=60°
所以可以得到∠BOC=60°
全部回答
- 1楼网友:掌灯师
- 2021-02-25 09:18
因为∠BOC+∠AOD=180°,又∠BOC:∠AOD=1:2,所以
∠BOC=180°*(1/3)=60°。
- 2楼网友:长青诗
- 2021-02-25 09:01
解:∵oa⊥oc,ob⊥od, ∴∠bod=90°,∠aoc=90°, ∴∠bod+∠aoc=180°, 即∠cod+∠boc+∠aob+∠boc=180°, ∴∠aod+∠boc=180°,① 又∵∠aod=3∠boc,② 解①、②得∠boc=45°.
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯