已知C,D是双曲线y=m/x在第一象限分支上的两点,直线CD分别交x轴,y轴于A,B两点.设C(x1,y1),D(x2,y2),连接OC,OD(O是坐标原点),若∠BOC=∠AOD=α,且tanα=1/3,OC=√10.
(1)求C ,D的坐标和m的值.
(2)双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明,若不存在,说明理由.
已知C,D是双曲线y=m/x在第一象限分支上的两点,直线CD分别交x轴,y轴于A,B两点.设C(x1,y1),D(x2,y2),连接OC,OD(O是坐标原点),若∠BOC=∠AOD=α,且tanα=1/3,OC=√10.
(1)求C ,D的坐标和m的值.
(2)双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明,若不存在,说明理由.
l OD:y=1/3 x ;l OC: y=3x ;C(x1,3x1),D(x2,1/3 x2) 因为OC==√10. x1=1 所以C(1,3) m=3 D(3,1)