解答题已知点P(3,4)是椭圆+=1(a>b>0)上的一点,F1、F2是椭
答案:2 悬赏:80 手机版
解决时间 2021-04-07 19:01
- 提问者网友:暮烟疏雨之际
- 2021-04-07 16:07
解答题
已知点P(3,4)是椭圆+=1(a>b>0)上的一点,F1、F2是椭圆的两焦点,若PF1⊥PF2,试求:(1)椭圆方程;(2)△PF1F2的面积.
最佳答案
- 五星知识达人网友:旧脸谱
- 2020-10-13 12:45
(1)法一:令F1(-c,0),F2(c,0),∵PF1⊥PF2,∴kPF1·kPF2=-1,即·=-1,解得c=5,∴椭圆方程为+=1.∵点P(3,4)在椭圆上,∴+=1,解得a2=45或a2=5,又a>c,∴a2=5舍去,故所求椭圆方程为+=1.法二:∵PF1⊥PF2,∴△PF1F2为直角三角形,∴|OP|=|F1F2|=c.又|OP|==5,∴c=5,∴椭圆方程为+=1(以下同法一)(2)法一:P点纵坐标的值即为F1F2边上的高,∴S△PF1F2=|F1F2|×4=×10×4=20.法二:由椭圆定义知:|PF1|+|PF2|=6①又|PF1|2+|PF2|2=|F1F2|2②①2-②得2|PF1|·|PF2|=80,∴S△PF1F2=|PF1|·|PF2|=20
全部回答
- 1楼网友:千杯敬自由
- 2019-11-14 19:26
对的,就是这个意思
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯