过抛物线C:x方=4y的焦点做斜率为一的直线交C于A,B两点,M是x轴上的动点,则向量MA乘以向量MB的最小值为
过抛物线C:x方=4y的焦点做斜率为一的直线交C于A,B两点,M是x轴上的动点,则向量MA乘以向量MB的最小值为
答案:1 悬赏:60 手机版
解决时间 2021-03-11 16:07
- 提问者网友:謫仙
- 2021-03-11 04:33
最佳答案
- 五星知识达人网友:猎心人
- 2021-03-11 05:52
由题意得,焦点P(0,1)
得直线方程:y=x+1
联立方程:y=x+1 ,x^2=4y
得A(2+√8,3+√8),B(2-√8,3-√8)
M(x,0)
向量MA(2+√8-x,3+√8),MB(2-√8-x,3-√8)
MA点乘MB =x^2-4x-3=(x-2)^2 - 7
得起最小值 -7
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯