设N是满足下列条件的最小自然数:它们是75的倍数且有75个因数(包括1和本身),求N.
小学使用的方法,
设N是满足下列条件的最小自然数:它们是75的倍数且有75个因数(包括1和本身),求N.
答案:1 悬赏:30 手机版
解决时间 2021-08-21 03:13
- 提问者网友:你挡着我发光了
- 2021-08-20 22:19
最佳答案
- 五星知识达人网友:怀裏藏嬌
- 2021-08-20 23:02
75=3×5^2
显然N必含有质因数3、5,且质因数5的个数至少为2.
根据约数个数公式
75 = 3×5×5 = (2+1)×(4+1)×(4+1)
即知,N含有3个不同质因数,次数分别为2、4、4次.
因此N可表达为:
N = X^2 × Y^4 × Z^4
要使N最小,显然X = 5,Y、Z = 3、2
即N = 5^2×3^4×2^4 = 25*81*16 = 32400
因此
N / 75 = 5^(2-2)×3^(4-1)×2^4 = 3^3×2^4 = 432
补充一下,关于上面的约数个数公式,在链接:
zhidao.baidu.com/question/165459990.html
里有我比较详细的解释.
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯