若一个等腰三角形的三边长均满足方程x2-9x+18=0,则此三角形的周长为________.
答案:2 悬赏:0 手机版
解决时间 2021-04-03 23:15
- 提问者网友:最爱你的唇
- 2021-04-03 09:06
若一个等腰三角形的三边长均满足方程x2-9x+18=0,则此三角形的周长为________.
最佳答案
- 五星知识达人网友:不想翻身的咸鱼
- 2021-04-03 10:45
9,15或18解析分析:把已知的方程左边利用十字相乘的方法分解因式,转化为两个一元一次方程,即可求出方程的两个解,然后分四种情况考虑:第一:考虑3为腰,6为底边,不满足两边之和大于第三边,故此情况不成立;第二:3为底边,6为腰,得出三角形的三边,求出三边之和即为三角形的周长;第三:三边长都为3,即三角形为等边三角形,求出周长即可;第四:三边长都为6,同理求出周长即可.解答:方程x2-9x+18=0,
因式分解得:(x-3)(x-6)=0,
解得:x1=3,x2=6,
若3为等腰三角形的腰,6为底边,则3+3=6,不能构成三角形,舍去;
若3为底边,6为腰,此三角形的三边分别为6,6,3,则周长为6+6+3=15;
若三角形三边长都为3,即三角形为等边三角形,则周长为3+3+3=9;
若三角形三边长都为6,即三角形为等边三角形,则周长为6+6+6=18,
综上,此三角形的周长为9,15或18.
故
因式分解得:(x-3)(x-6)=0,
解得:x1=3,x2=6,
若3为等腰三角形的腰,6为底边,则3+3=6,不能构成三角形,舍去;
若3为底边,6为腰,此三角形的三边分别为6,6,3,则周长为6+6+3=15;
若三角形三边长都为3,即三角形为等边三角形,则周长为3+3+3=9;
若三角形三边长都为6,即三角形为等边三角形,则周长为6+6+6=18,
综上,此三角形的周长为9,15或18.
故
全部回答
- 1楼网友:青尢
- 2021-04-03 11:33
我检查一下我的答案
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯