永发信息网

=2(xy+yz+zx)

答案:2  悬赏:60  手机版
解决时间 2021-03-09 21:14
  • 提问者网友:骨子里的高雅
  • 2021-03-09 15:17
=2(xy+yz+zx)
最佳答案
  • 五星知识达人网友:舍身薄凉客
  • 2021-03-09 15:59
[(b+c)/a]x^2+[(c+a)/b]y^2+[(a+b)/c]z^2=(b/a)x^2+(a/b)y^2+(c/a)x^2+(a/c)z^2+(c/b)y^2+(b/c)z^2=[(b/a)x^2+(a/b)y^2-2xy]+[(c/a)x^2+(a/c)z^2-2xz]+[(c/b)y^2+(b/c)z^2-2yz]=[(b/a)x^2+(a/b)y^2-2(sqrt(b)x/sqrt(a))(sqrt(a)y/sqrt(b))]+[(c/a)x^2+(a/c)z^2-2(sqrt(c)x/sqrt(a))(sqrt(a)z/sqrt(c)]+[(c/b)y^2+(b/c)z^2-2(sqrt(c)y/sqrt(b))(sqrt(b)z/sqrt(c))]=[(sqrt(b)x/sqrt(a)-(sqrt(a)y/sqrt(b)]^2+[(sqrt(c)x/sqrt(a)-(sqrt(c)z/sqrt(a)]^2+[(sqrt(c)y/sqrt(a)-(sqrt(a)z/sqrt(c)]^2≥0======以下答案可供参考======供参考答案1:证:b/ax²+a/by²≥2√(x²y²)=2|xy|≥2xy同理c/ax²+a/cz²≥2zx,c/by²+b/cz²≥2yz上三式相加,即为所证。供参考答案2:[(b+c)/a]x^2+[(c+a)/b]y^2+[(a+b)/c]z^2=(b/a)x^2+(a/b)y^2+(c/a)x^2+(a/c)z^2+(c/b)y^2+(b/c)z^2=[(b/a)x^2+(a/b)y^2-2xy]+[(c/a)x^2+(a/c)z^2-2xz]+[(c/b)y^2+(b/c)z^2-2yz]=[(b/a)x^2+(a/b)y^2-2(sqrt(b)x/sqrt(a))(sqrt(a)y/sqrt(b))]+[(c/a)x^2+(a/c)z^2-2(sqrt(c)x/sqrt(a))(sqrt(a)z/sqrt(c)]+[(c/b)y^2+(b/c)z^2-2(sqrt(c)y/sqrt(b))(sqrt(b)z/sqrt(c))]=[(sqrt(b)x/sqrt(a)-(sqrt(a)y/sqrt(b)]^2+[(sqrt(c)x/sqrt(a)-(sqrt(c)z/sqrt(a)]^2+[(sqrt(c)y/sqrt(a)-(sqrt(a)z/sqrt(c)]^2≥0 证:b/ax2+a/by2≥2√(x2y2)=2|xy|≥2xy同理c/ax2+a/cz2≥2zx,c/by2+b/cz2≥2yz上三式相加,即为所证。
全部回答
  • 1楼网友:夜风逐马
  • 2021-03-09 17:35
这个答案应该是对的
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯