在三角形ABC中 ∠A=90度 AB=AC D为BC中点 EF分别为AB,AC上的点 BE=AF则三角形DEF为等腰直角三角形
在三角形ABC中 ∠A=90度 AB=AC D为BC中点 EF分别为AB,AC上的点 BE=AF
为什么
则三角形DEF为等腰直角三角形
在三角形ABC中 ∠A=90度 AB=AC D为BC中点 EF分别为AB,AC上的点 BE=AF则三角形DEF为等腰直角
答案:1 悬赏:70 手机版
解决时间 2021-05-12 04:02
- 提问者网友:谁的错
- 2021-05-11 14:31
最佳答案
- 五星知识达人网友:持酒劝斜阳
- 2021-05-11 14:48
证明:连接AD,
∵角A=90°,AB=AC,D为BC的中点
∴AD⊥BC,∠CAD=∠BAD=∠B=45°
∴AD=BD,
∵BE=AF
∴△DBE≌⊿DAF
∴ED=DF,∠ADF=∠BDE,
∴∠EDF=∠ADB=90º
∴三角形DEF是等腰直角三角形
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯