已知在三角形ABC中,点D在BC上且BD=DC,AD平分角BAC求证AB=AC
答案:2 悬赏:70 手机版
解决时间 2021-03-02 20:10
- 提问者网友:夢醒日落
- 2021-03-02 00:46
已知在三角形ABC中,点D在BC上且BD=DC,AD平分角BAC求证AB=AC
最佳答案
- 五星知识达人网友:轻熟杀无赦
- 2021-03-02 01:23
证明:过D做AB、AC上的垂线DE、DF
因为:D是角A平分线上的点
所以:DE=DF
又因:BD=BC
所以:直角三角形BDE全等于DCF
所以角B等于角C
所以角BDA=角CDA
所以三角形ABC全等于ADC (边角边)
所以:AB=AC
因为:D是角A平分线上的点
所以:DE=DF
又因:BD=BC
所以:直角三角形BDE全等于DCF
所以角B等于角C
所以角BDA=角CDA
所以三角形ABC全等于ADC (边角边)
所以:AB=AC
全部回答
- 1楼网友:躲不过心动
- 2021-03-02 02:09
证明:因为ab>ac
所以在ab边上截取ae=ac,连接de
因为ad平分角bac
所以角dae=角dac
因为ad=ad
所以三角形dae和三角形dac全等(sas)
所以cd=de
角ade=角adc
因为在三角形abd中
角adc>角b
在三角形ade中
角bed>角ade
所以角bed>角b
所以bd>de
所以bd>dc
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯