永发信息网

设数列an的前n项和为Sn,且a1=1,S(n+1)=4an+2

答案:3  悬赏:0  手机版
解决时间 2021-05-02 02:51
  • 提问者网友:几叶到寒
  • 2021-05-01 06:57

设bn=a(n+1)-2an,求证bn是等比数列

设cn=an/2^n,求证cn是等差数列

求Sn

最佳答案
  • 五星知识达人网友:轻雾山林
  • 2021-05-01 08:27

a[n+1]=s[n+1]-s[n]=4(a[n]-a[n-1]),a[n+1]-2a[n]=2(a[n]-2a[n-1]),b[n]为以2为公比等比数列


b[n-1]/2^n=(a[n]/2^n-a[n-1]/2^n),又b[n]/2^(n+1)=b[n-1]/2^n为常数,可知c[n]等差数列

全部回答
  • 1楼网友:杯酒困英雄
  • 2021-05-01 10:02

3、Sn=a1+……+an=4a(n-1)+2

∵Cn=an/2^n

∴an=Cn*2^n

∴a(n-1)=C(n-1)*2^(n-1)  (n≥2)

∵Cn=3n/4-1/4

∴C(n-1)=3n/4-1

∴Sn=3n*2^(n-1)-2^(n+1)+2

  • 2楼网友:旧脸谱
  • 2021-05-01 09:17
公比现在出来了为2,首项就自己去算下吧。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯